• Title/Summary/Keyword: Optical 3D scanner

Search Result 65, Processing Time 0.031 seconds

Multi-facet 3D Scanner Based on Stripe Laser Light Image (선형 레이저 광 영상기반 다면 3 차원 스캐너)

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.811-816
    • /
    • 2016
  • In light of recently developed 3D printers for rapid prototyping, there is increasing attention on the 3D scanner as a 3D data acquisition system for an existing object. This paper presents a prototypical 3D scanner based on a striped laser light image. In order to solve the problem of shadowy areas, the proposed 3D scanner has two cameras with one laser light source. By using a horizontal rotation table and a rotational arm rotating about the latitudinal axis, the scanner is able to scan in all directions. To remove an additional optical filter for laser light pixel extraction of an image, we have adopted a differential image method with laser light modulation. Experimental results show that the scanner's 3D data acquisition performance exhibited less than 0.2 mm of measurement error. Therefore, this scanner has proven that it is possible to reconstruct an object's 3D surface from point cloud data using a 3D scanner, enabling reproduction of the object using a commercially available 3D printer.

Comparative study of accuracy of digitized model fabricated by difference optical source of non-contact 3D dental scanner (치과용 스캐너의 광원에 따른 디지털 모형의 정확도 비교연구)

  • Kim, Jae-Hong;Lee, Jung-Soo;Shim, Jeong-Seok
    • Journal of Technologic Dentistry
    • /
    • v.39 no.4
    • /
    • pp.227-233
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate the validity of digital models fabricated by difference optical source of non-contact 3D dental scanner. Methods: A master model with the prepared upper full arch tooth was used. Stone model(N=10) were produced from master model, and on the other hands, digital models were made with the 3D dental scanner(Blue, white, red optical source). The linear distance between the reference points were measured and analyzed on the Delcam $Copycad^{(R)}$ graphic software. The results were statistically analyzed using the one-way ANOVA and Tukey's HSD test(${\alpha}=0.05$). Results: There were considerable differences in mean values between optical source within each color(blue, white, red), and this difference was not statistically significant(p>0.05). Conclusion : Three different color of dental scanner optical source showed clinically acceptable accuracies of full arch digital model produced by them. Besides, these results will have to be confirmed in further clinical studies.

Development of 3D Scanner Based on Laser Structured-light Image (레이저 구조광 영상기반 3차원 스캐너 개발)

  • Ko, Young-Jun;Yi, Soo-Yeong;Lee, Jun-O
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • This paper addresses the development of 3D data acquisition system (3D scanner) based laser structured-light image. The 3D scanner consists of a stripe laser generator, a conventional camera, and a rotation table. The stripe laser onto an object has distortion according to 3D shape of an object. By analyzing the distortion of the laser stripe in a camera image, the scanner obtains a group of 3D point data of the object. A simple semiconductor stripe laser diode is adopted instead of an expensive LCD projector for complex structured-light pattern. The camera has an optical filter to remove illumination noise and improve the performance of the distance measurement. Experimental results show the 3D data acquisition performance of the scanner with less than 0.2mm measurement error in 2 minutes. It is possible to reconstruct a 3D shape of an object and to reproduce the object by a commercially available 3D printer.

Applications of Optical Imaging System in Dentistry

  • Eom, Joo Beom;Park, Anjin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Optical-based imaging technology has high resolution and can assess images in real time. Numerous studies have been conducted for its application in the dental field. The current research introduces an oral camera that includes fluorescent imaging, a second study examining a 3D intraoral scanner applying a confocal method and a polarization structure that identifies the 3D image of a tooth, and finally, an optical coherence tomography technique. Using this technique, we introduce a new concept 3D oral scanner that simultaneously implements 3D structural imaging as well as images that diagnose the inside of teeth. With the development of light source technology and detector technology, various optical-based imaging technologies are expected to be applied in dentistry.

Development of Structured Light 3D Scanner Based on Image Processing

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.49-58
    • /
    • 2019
  • 3D scanners are needed in various fields, and their usage range is greatly expanded. In particular, it is being used to reduce costs at various stages during product development and production. Now, the importance of quality inspection in the manufacturing industry is increasing. Structured optical system applied in this study is suitable for measuring high precision of mold, press work, precision products, etc. and economical and effective 3D scanning system for measuring inspection in manufacturing industry can be implemented. We developed Structured light 3D scanner which can measure high precision by using Digital Light Processing (DLP) projector and camera. In this paper, 3D image scanner based on structured optical system can realize 3D scanning system economically and effectively when measuring inspection in the manufacturing industry.

Development of Image-space Telecentric Lens for Intra-Oral 3D Scanner

  • Kim, Tae Young;Shin, Min-Ho;Chang, Ryungkee;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • An image-space telecentric lens for an intra-oral 3D scanner was designed and fabricated for dental application. Since a telecentric function can provide the same results regardless of image plane position, it helps to realize a more accurate image for an intra-oral scanner. The performance of the designed lens meets the required properties for HD resolution. In particular, lateral color is corrected within 1 pixel. This system achieves depth of focus of more than 3 mm. For user convenience, the developed system consists of a prism part and an imaging part. Both parts are optimized to reduce the front size and weight of the system. In order to make the parallax sights, parallax angle was determined to be 8 degrees between two optical systems.

Super Multi-View 3-D Display System using Vibrating Scanner Array(ViSA)

  • Jeon, Ho-In;Jung, Nak-Hee;Choi, Jin-San;Kang, Yo-Seek;Choi, Se-Ha;Shin, Sang-Hun;Son, Jung-Yung
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • In this paper, we propose a super multi-view (SMV) 3-D display system using a vibrating scanner array (ViSA). The parallel beam scanning using a vibrating scanner array is performed by moving back and forth an array of curvature-compensated mirrors attached to two vibrating membranes. The parallel laser beam scanner array can replace the polygon mirror scanner which has been used in the SMV 3-D display system based on the focused light array(FLA) concept. The proposed system has great advantages in the sense that it requires neither huge imaging optics normechanical scanning parts. Some mathematical analyses and fundamental limitations of the proposed system are presented. The proposed vibrating scanner array, after some modifications and refinements, will replace polygon mirror-based scanners in the near future.

Development of 3D scanner using structured light module based on variable focus lens

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.260-268
    • /
    • 2020
  • Currently, it is usually a 3D scanner processing method as a laser method. However, the laser method has a disadvantage of slow scanning speed and poor precision. Although optical scanners are used as a method to compensate for these shortcomings, optical scanners are closely related to the distance and precision of the object, and have the disadvantage of being expensive. In this paper, 3D scanner using variable focus lens-based structured light module with improved measurement precision was designed to be high performance, low price, and usable in industrial fields. To this end, designed a telecentric optical system based on a variable focus lens and connected to the telecentric mechanism of the step motor and lens to adjust the focus of the variable lens. Designed a connection structure with optimized scalability of hardware circuits that configures a stepper motor to form a system with a built-in processor. In addition, by applying an algorithm that can simultaneously acquire high-resolution texture image and depth information and apply image synthesis technology and GPU-based high-speed structured light processing technology, it is also stable for changes to external light. We will designed and implemented for further improving high measurement precision.

3D scanner's measurement path establishment automation by robot simulator

  • Jang, Pyung-Su;Lee, Sang-Heon;Chang, Min-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2179-2182
    • /
    • 2005
  • Recently, optical 3D scanners are frequently used for inspection of parts, assembly and manufacturing tooling. One of the advantages is being able to measure a large area fast and accurately. Owing to recent advances in high-resolution image sensing technology, high power illumination technology, and high speed microprocessors, the accuracy and resolution of optical 3D scanners are being improved rapidly. In order to measure the entire geometry of objects, multiple scans have to be performed in various setups by moving either the objects or the scanner. This paper introduces novel methods to measure the entire geometry of objects by automatically changing the setups and then aligning the scanned data in a single coordinate system.

  • PDF