• 제목/요약/키워드: Opposition-Based Learning

검색결과 16건 처리시간 0.022초

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD

  • Raeesi, Farzad;Shirgir, Sina;Azar, Bahman F.;Veladi, Hedayat;Ghaffarzadeh, Hosein
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.719-730
    • /
    • 2020
  • Recently, population based optimization algorithms are developed to deal with a variety of optimization problems. In this paper, the salp swarm algorithm (SSA) is dramatically enhanced and a new algorithm is named Enhanced Salp Swarm Algorithm (ESSA) which is effectively utilized in optimization problems. To generate the ESSA, an opposition-based learning and merit function methods are added to standard SSA to enhance both exploration and exploitation abilities. To have a clear judgment about the performance of the ESSA, firstly, it is employed to solve some mathematical benchmark test functions. Next, it is exploited to deal with engineering problems such as optimally designing the benchmark buildings equipped with multiple tuned mass damper (MTMD) under earthquake excitation. By comparing the obtained results with those obtained from other algorithms, it can be concluded that the proposed new ESSA algorithm not only provides very competitive results, but also it can be successfully applied to the optimal design of the MTMD.

Path-smoothing for a robot arm manipulator using a Gaussian process

  • Park, So-Youn;Lee, Ju-Jang
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.191-196
    • /
    • 2015
  • In this paper, we present a path-smoothing algorithm for a robot arm manipulator that finds the path using a joint space-based rapidly-exploring random tree. Unlike other smoothing algorithms which require complex mathematical computation, the proposed path-smoothing algorithm is done using a Gaussian process. To find the optimal hyperparameters of the Gaussian process, we use differential evolution hybridized with opposition-based learning. The simulation result indicates that the Gaussian process whose hyperparameters were optimized by hybrid differential evolution successfully smoothed the path generated by the joint space-based rapidly-exploring random tree.

Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model

  • Shirgir, Sina;Azar, Bahman Farahmand;Hadidi, Ali
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.493-506
    • /
    • 2020
  • In this paper, a new opposition based charged system search (CSS) is proposed to be used as a parameter identification of highly nonlinear semi-active magneto-rheological damper. By replacing the opposition particles with current solutions, the mentioned strategy is used to enhance the search space and to increase the exploration of CSS. To investigate the effectiveness of the proposed method, a nonlinear modified Bouc-Wen model of MR damper is considered to find its parameters, and compare it with those achieved from experimental model of MR damper. Also, by exploiting the sensitivity analysis and using the importance vector, the less importance parameters in the Bouc-Wen model are eliminated which makes the MR damper model simpler. Results demonstrate the new proposed algorithm (OBLCSS) has a high ability to tackle highly nonlinear problems. Based on the results of the α importance vector, a simplified model is proposed and its parameters are identified by using the presented OBLCSS algorithm. The simplified proposed model also has a high capability of estimating damper responses.

OAPR-HOML'1: Optimal automated program repair approach based on hybrid improved grasshopper optimization and opposition learning based artificial neural network

  • MAMATHA, T.;RAMA SUBBA REDDY, B.;BINDU, C SHOBA
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.261-273
    • /
    • 2022
  • Over the last decade, the scientific community has been actively developing technologies for automated software bug fixes called Automated Program Repair (APR). Several APR techniques have recently been proposed to effectively address multiple classroom programming errors. However, little attention has been paid to the advances in effective APR techniques for software bugs that are widely occurring during the software life cycle maintenance phase. To further enhance the concept of software testing and debugging, we recommend an optimized automated software repair approach based on hybrid technology (OAPR-HOML'1). The first contribution of the proposed OAPR-HOML'1 technique is to introduce an improved grasshopper optimization (IGO) algorithm for fault location identification in the given test projects. Then, we illustrate an opposition learning based artificial neural network (OL-ANN) technique to select AST node-level transformation schemas to create the sketches which provide automated program repair for those faulty projects. Finally, the OAPR-HOML'1 is evaluated using Defects4J benchmark and the performance is compared with the modern technologies number of bugs fixed, accuracy, precession, recall and F-measure.

Efficient gravitational search algorithm for optimum design of retaining walls

  • Khajehzadeh, Mohammad;Taha, Mohd Raihan;Eslami, Mahdiyeh
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.111-127
    • /
    • 2013
  • In this paper, a new version of gravitational search algorithm based on opposition-based learning (OBGSA) is introduced and applied for optimum design of reinforced concrete retaining walls. The new algorithm employs the opposition-based learning concept to generate initial population and updating agents' position during the optimization process. This algorithm is applied to minimize three objective functions include weight, cost and $CO_2$ emissions of retaining structure subjected to geotechnical and structural requirements. The optimization problem involves five geometric variables and three variables for reinforcement setups. The performance comparison of the new OBGSA and classical GSA algorithms on a suite of five well-known benchmark functions illustrate a faster convergence speed and better search ability of OBGSA for numerical optimization. In addition, the reliability and efficiency of the proposed algorithm for optimization of retaining structures are investigated by considering two design examples of retaining walls. The numerical experiments demonstrate that the new algorithm has high viability, accuracy and stability and significantly outperforms the original algorithm and some other methods in the literature.

Nonlinear identification of Bouc-Wen hysteretic parameters using improved experience-based learning algorithm

  • Luo, Weili;Zheng, Tongyi;Tong, Huawei;Zhou, Yun;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.101-114
    • /
    • 2020
  • In this paper, an improved experience-based learning algorithm (EBL), termed as IEBL, is proposed to solve the nonlinear hysteretic parameter identification problem with Bouc-Wen model. A quasi-opposition-based learning mechanism and new updating equations are introduced to improve both the exploration and exploitation abilities of the algorithm. Numerical studies on a single-degree-of-freedom system without/with viscous damping are conducted to investigate the efficiency and robustness of the proposed algorithm. A laboratory test of seven lead-filled steel tube dampers is presented and their hysteretic parameters are also successfully identified with normalized mean square error values less than 2.97%. Both numerical and laboratory results confirm that, in comparison with EBL, CMFOA, SSA, and Jaya, the IEBL is superior in nonlinear hysteretic parameter identification in terms of convergence and accuracy even under measurement noise.

폴란드인이 한국어 학습에 나타난 발음상의 음성학적 문제 (Basic Phonetic Problems Encountered by Poles Studying Korean.)

  • 안나 빠라돕스카
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 1996년도 10월 학술대회지
    • /
    • pp.247-251
    • /
    • 1996
  • This paper is intended as a preliminary study on phonetic and phonological differences between Polish and Korean languages. In this paper an attempt is made to examine the most conspicious difficulties encountered by Polish learners who begin to speak Korean (and in doing so, 1 would hope that it might be of help to future learners of both languages). Since the phoneme inventory and general phonetic rules for both languages are very different, teaching and learning accurate pronunciation is extremely difficult for both the Poles and Koreans without any previous phonetic training. In the case of Polish and Korean we can see how strong and persistent the influences of the mother-tongue are on the target language. As an example I would like to discuss the basic differences between Polish and Korean consonants. The most important consonantal opposition in Polish is voice-/voicelessness (f. ex.; 〔b〕 / 〔p〕, 〔g〕 / 〔k〕) while in Korean, opposition such as voice-/voicelessness is of secondary importance. Therefore Korean speakers do not perceive the difference between Polish voiced and voiceless consonants. On the other hand, Polish speakers can not distinguish Korean lenis / fortis / aspirated consonants (f. ex.; ㅂ 〔b〕 / ㅃ 〔p〕 / ㅍ〔ph〕, ㄱ 〔g〕 / ㄲ 〔k〕 / ㅋ 〔kh〕)) opposition. The other very important factor is palatalization which is of vital importance in Polish and, because of this, Polish speakers are extremely sensitive to it. In Korean palatalization is not important phonetically and Korean speakers do not distinguish between palatalized and non-palatalized consonants. The transcription used here is based on ' The principles of the International Phonetic Association and the Korean Phonetic Alphabet ' (1981) by Hyun Bok Lee.

  • PDF

Compression and Enhancement of Medical Images Using Opposition Based Harmony Search Algorithm

  • Haridoss, Rekha;Punniyakodi, Samundiswary
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.288-304
    • /
    • 2019
  • The growth of telemedicine-based wireless communication for images-magnetic resonance imaging (MRI) and computed tomography (CT)-leads to the necessity of learning the concept of image compression. Over the years, the transform based and spatial based compression techniques have attracted many types of researches and achieve better results at the cost of high computational complexity. In order to overcome this, the optimization techniques are considered with the existing image compression techniques. However, it fails to preserve the original content of the diagnostic information and cause artifacts at high compression ratio. In this paper, the concept of histogram based multilevel thresholding (HMT) using entropy is appended with the optimization algorithm to compress the medical images effectively. However, the method becomes time consuming during the measurement of the randomness from the image pixel group and not suitable for medical applications. Hence, an attempt has been made in this paper to develop an HMT based image compression by utilizing the opposition based improved harmony search algorithm (OIHSA) as an optimization technique along with the entropy. Further, the enhancement of the significant information present in the medical images are improved by the proper selection of entropy and the number of thresholds chosen to reconstruct the compressed image.

Psychological and Pedagogical Features the Use of Digital Technology in a Blended Learning Environment

  • Volkova Nataliia;Poyasok Tamara;Symonenko Svitlana;Yermak Yuliia;Varina Hanna;Rackovych Anna
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.127-134
    • /
    • 2024
  • The article highlights the problems of the digitalization of the educational process, which affect the pedagogical cluster and are of a psychological nature. The authors investigate the transformational changes in education in general and the individual beliefs of each subject of the educational process, caused by both the change in the format of learning (distance, mixed), and the use of new technologies (digital, communication). The purpose of the article is to identify the strategic trend of the educational process, which is a synergistic combination of pedagogical methodology and psychological practice and avoiding dialectical opposition of these components of the educational space. At the same time, it should be noted that the introduction of digital technologies in the educational process allows for short-term difficulties, which is a usual phenomenon for innovations in the educational sphere. Consequently, there is a need to differentiate the fundamental problems and temporary shortcomings that are inherent in the new format of learning (pedagogical features). Based on the awareness of this classification, it is necessary to develop psychological techniques that will prevent a negative reaction to the new models of learning and contribute to a painless moral and spiritual adaptation to the realities of the present (psychological characteristics). The methods used in the study are divided into two main groups: general-scientific, which investigates the pedagogical component (synergetic, analysis, structural and typological methods), and general-scientific, which are characterized by psychological direction (dialectics, observation, and comparative analysis). With the help of methods disclosed psychological and pedagogical features of the process of digitalization of education in a mixed learning environment. The result of the study is to develop and carry out methodological constants that will contribute to the synergy for the new pedagogical components (digital technology) and the psychological disposition to their proper use (awareness of the effectiveness of new technologies). So, the digitalization of education has demonstrated its relevance and effectiveness in the pedagogical dimension in the organization of blended and distance learning under the constraints of the COVID-19 pandemic. The task of the psychological cluster is to substantiate the positive aspects of the digitalization of the educational process.