• Title/Summary/Keyword: Opioid withdrawal

Search Result 26, Processing Time 0.019 seconds

Tapentadol: Can It Kill Two Birds with One Stone without Breaking Windows?

  • Chang, Eun Jung;Choi, Eun Ji;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.29 no.3
    • /
    • pp.153-157
    • /
    • 2016
  • Tapentadol is a novel oral analgesic with a dual mode of action as an agonist of the ${\mu}$-opioid receptor (MOR), and as a norepinephrine reuptake inhibitor (NRI) all in a single molecule. Immediate release (IR) tapentadol shows its analgesic effect quickly, at around 30 minutes. Its MOR agonistic action produces acute nociceptive pain relief; its role as an NRI brings about chronic neuropathic pain relief. Absorption is rapid, with a mean maximal serum concentration at 1.25-1.5 h after oral intake. It is present primarily in the form of conjugated metabolites after glucuronidation, and excretes rapidly and completely via the kidneys. The most common adverse reactions are nausea, dizziness, vomiting, and somnolence. Constipation is more common in use of the ER formulation. Precautions against concomitant use of central nervous system depressants, including sedatives, hypnotics, tranquilizers, general anesthetics, phenothiazines, other opioids, and alcohol, or use of tapentadol within 14 days of the cessation of monoamine oxidase inhibitors, are advised. The safety and efficacy have not been established for use during pregnancy, labor, and delivery, or for nursing mothers, pediatric patients less than 18 years of age, and cases of severe renal impairment and severe hepatic impairment. The major concerns for tapentadol are abuse, addiction, seeking behavior, withdrawal, and physical dependence. The presumed problem for use of tapentadol is to control the ratio of MOR agonist and NRI. In conclusion, tapentadol produces both nociceptive and neuropathic pain relief, but with worries about abuse and dependence.

Antinociceptive Effects of Intrathecal Metabotropic Glutamate Receptor Compounds and Morphine in Rats

  • Choi, Jeong II;Lee, Hyung Kon;Chung, Sung Tae;Kim, Chang Mo;Bae, Hong Beom;Kim, Seok Jai;Yoon, Myung Ha;Chung, Sung Su;Jeong, Chang Young
    • The Korean Journal of Pain
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • Background: Spinal metabotropic glutamate receptors (mGluRs) and opioid receptors are involved in the modulation of nociception. Although opioid receptors agonists are active for pain, the effects of the compounds for the mGluRs have not been definitely investigated at the spinal level. We examined the effects of the intrathecal mGluR compounds and morphine in the nociceptive test, and then we further clarified the role of the spinal mGluRs. In addition, the nature of the pharmacological interaction after the coadministration of mGluRs compounds with morphine was determined. Methods: Catheters were inserted into the intrathecal space of male SD rats. For the induction of pain, $50{\mu}l$ of 5% formalin solution or a thermal stimulus was applied to the hindpaw. An isobolographic analysis was used for the evaluation of the drug interaction. Results: Neither group I mGluR compounds nor group III mGluR compounds produced any antinociceptive effect in the formalin test. The group II mGluR agonist (APDC) had little effect on the formalin-induced nociception. The group II mGluR antagonist (LY 341495) caused a dose-dependent suppression of the phase 2 flinching response on the formalin test, but it did not reduce the phase 1 response of the formalin test nor did it increase the withdrawal latency of the thermal stimulus. Isobolographic analysis revealed a synergistic interaction after the intrathecal delivery of a LY 341495-morphine mixture. Conclusions: These results suggest that group II mGluRs are involved in the facilitated processing at the spinal level, and the combination of LY 341495 with morphine may be useful to manage the facilitated pain state.

Markers in Morphine- and Cocaine-Addicted Animals

  • Hu, Zhenzhen;Park, Kwang-Soon;Han, Jin-Yi;Jang, Choon-Gon;Oh, Sei-Kwan;Kim, Hyoung-Chun;Yang, Chae-Ha;Kim, Eun-Jeong;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2011
  • These experiments were designed to use typical makers from behaviors and molecular basis in addicted animals of morphine and cocaine. Morphine has been widely abused with a high physical dependence liability. Morphine withdrawal activates the intracellular cAMP signaling pathway and further leads to changes in the expression of the cAMP response element binding protein (CREB), which may be important to the development and expression of morphine dependence. From these experiments, repeated morphine (10 mg/kg, twice per day for 7 days) developed physical dependence. Withdrawal signs were precipitated by naloxone and also increased the expression of the CREB. In addition, repeated exposure of cocaine (15 mg/kg) to mice develops locomotor sensitization and produced lasting behavioral sensitivity. Cocaine- and amphetamine-regulated transcript peptide (CART) peptide was up-regulated by repeated administration of cocaine in the striatum. Therefore, repeated morphine induced the development of physical dependence and increased pCREB. In addition, repeated cocaine induced locomotor sensitization and over-expressed CART peptide. In conclusion, the development of physical dependence and pCREB for morphine, and locomotor sensitization and CART peptide over-expression for cocaine would be useful markers to predict the abuse potential of opioid analgesics and pychostimulant drugs in animals, respectively.

Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain

  • Kim, Juhwan;Lee, Sueun;Kang, Sohi;Jeon, Tae-Il;Kang, Man-Jong;Lee, Tae-Hoon;Kim, Yong Sik;Kim, Key-Sun;Im, Heh-In;Moon, Changjong
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.454-464
    • /
    • 2018
  • Crosstalk between G-protein signaling and glutamatergic transmission within the brain reward circuits is critical for long-term emotional effects (depression and anxiety), cravings, and negative withdrawal symptoms associated with opioid addiction. A previous study showed that Regulator of G-protein signaling 4 (RGS4) may be implicated in opiate action in the nucleus accumbens (NAc). However, the mechanism of the NAc-specific RGS4 actions that induce the behavioral responses to opiates remains largely unknown. The present study used a short hairpin RNA (shRNA)-mediated knock-down of RGS4 in the NAc of the mouse brain to investigate the relationship between the activation of ionotropic glutamate receptors and RGS4 in the NAc during morphine reward. Additionally, the shRNA-mediated RGS4 knock-down was implemented in NAc/striatal primary-cultured neurons to investigate the role that striatal neurons have in the morphine-induced activation of ionotropic glutamate receptors. The results of this study show that the NAc-specific knock-down of RGS4 significantly increased the behaviors associated with morphine and did so by phosphorylation of the GluR1 (Ser831) and NR2A (Tyr1325) glutamate receptors in the NAc. Furthermore, the knock-down of RGS4 enhanced the phosphorylation of the GluR1 and NR2A glutamate receptors in the primary NAc/striatal neurons during spontaneous morphine withdrawal. These findings show a novel molecular mechanism of RGS4 in glutamatergic transmission that underlies the negative symptoms associated with morphine administration.

Antinociceptive Effects of Alpinia katsumadai via Cyclooxygenase-2 Inhibition

  • Choi, Jin-Kyu;Kim, Kwang-Mi;Yeom, Myeong-Hoon;Cho, Hee-Yeong;Lee, Hye-Ja;Park, Mi-Kyung;Jeong, Kyung-Chae;Lee, Byung-Il;Noh, Min-Soo;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Alpinia katsumadai has been widely used in traditional Chinese and Korean medicine to treat a variety of conditions including emesis and gastric disorders such as gastric pain and distended abdomen. To investigate the antinociceptive potential and mechanism of A. katsumadai, ethanolic extracts of A. katsumadai were assayed on cyclooxygenase-2 and evaluated for analgesic activity based on phenylbenzoquinone (PBQ)-induced writhing and carrageenan-induced hyperalgesia tests. A. katsumadai extracts inhibited the cyclooxygenase-2 enzyme activity in a dose-dependent fashion at an $IC_{50}$ value of 0.044 ${\mu}g$/ml. A. katsumadai extract (30-300 mg/kg, orally (p.o.) administered) significantly inhibited PBQ-induced writhing. This inhibition was judged not to be a false positive because a Rota-rod test revealed no difference in muscular coordination when compared to the controls. With regard to the carrageenan-induced hyperalgesia, A. katsumadai extract (30-300 mg/kg, p.o.) produced a significant, dose-dependent increase in the withdrawal response latencies. Naloxone did not reverse the analgesic effect of A. katsumadai extract in the carrageenan-induced hyperalgesia. Taken together, these results suggest that the antinociceptive activity of A. katsumadai is not related to the opioid receptor. A. katsumadai extract has remarkable, non-opioidreceptor-mediated analgesic effects on PBQ-induced writhing and carrageenan-induced hyperalgesia that occur via cyclooxygenase-2 inhibition.

Analgesic Effects of Toad Cake and Toad-cake-containing Herbal Drugs -Analgesic effects of toad cake-

  • Inoue, Eiji;Shimizu, Yasuharu;Masui, Ryo;Usui, Tomomi;Sudoh, Keiichi
    • Journal of Pharmacopuncture
    • /
    • v.17 no.1
    • /
    • pp.74-79
    • /
    • 2014
  • Objectives: This study was conducted to clarify the analgesic effect of toad cake and toad-cake-containing herbal drugs. Methods: We counted the writhing response of mice after the intraperitoneal administration of acetic acid as a nociceptive pain model and the withdrawal response after the plantar surface stimulation of the hind paw induced by partial sciatic nerve ligation of the mice as a neuropathic pain model to investigate the analgesic effect of toad cake and toad-cake-containing herbal drugs. A co-treatment study with serotonin biosynthesis inhibitory drug 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), the catecholamine biosynthesis inhibitory drug ${\alpha}$-methyl-DL-tyrosine methyl ester hydrochloride (AMPT) or the opioid receptor antagonist naloxone hydrochloride was also conducted. Results: Analgesic effects in a mouse model of nociceptive pain and neuropathic pain were shown by oral administration of toad cake and toad-cake-containing herbal drugs. The effects of toad cake and toad-cake-containing herbal drugs disappeared upon co-treatment with PCPA, but not with AMPT or naloxone in the nociceptive pain model; the analgesic effect of toad-cake-containing herbal drugs also disappeared upon co-treatment with PCPA in the neuropathic pain model. Conclusion: Toad cake and toad-cake-containing herbal drugs have potential for the treatments of nociceptive pain and of neuropathic pain, such as post-herpetic neuralgia, trigeminal neuralgia, diabetic neuralgia, and postoperative or posttraumatic pain, by activation of the central serotonin nervous system.