DOI QR코드

DOI QR Code

Markers in Morphine- and Cocaine-Addicted Animals

  • Received : 2010.09.13
  • Accepted : 2010.11.04
  • Published : 2011.01.31

Abstract

These experiments were designed to use typical makers from behaviors and molecular basis in addicted animals of morphine and cocaine. Morphine has been widely abused with a high physical dependence liability. Morphine withdrawal activates the intracellular cAMP signaling pathway and further leads to changes in the expression of the cAMP response element binding protein (CREB), which may be important to the development and expression of morphine dependence. From these experiments, repeated morphine (10 mg/kg, twice per day for 7 days) developed physical dependence. Withdrawal signs were precipitated by naloxone and also increased the expression of the CREB. In addition, repeated exposure of cocaine (15 mg/kg) to mice develops locomotor sensitization and produced lasting behavioral sensitivity. Cocaine- and amphetamine-regulated transcript peptide (CART) peptide was up-regulated by repeated administration of cocaine in the striatum. Therefore, repeated morphine induced the development of physical dependence and increased pCREB. In addition, repeated cocaine induced locomotor sensitization and over-expressed CART peptide. In conclusion, the development of physical dependence and pCREB for morphine, and locomotor sensitization and CART peptide over-expression for cocaine would be useful markers to predict the abuse potential of opioid analgesics and pychostimulant drugs in animals, respectively.

Keywords

References

  1. Bannon, A. W., Seda, J., Carmouche, M., Francis, J. M., Jarosinski,M. A. and Douglass, J. (2001) Multiple behavioral effects of cocaine- and amphetamine-regulated transcript (CART) peptides inmice: CART 42-89 and CART 49-89 differ in potency and activity.J. Pharmacol. Exp. Ther. 299, 1021-1026.
  2. Collier, H. O. and Francis, D. L. (1975) Morphine abstinence is associatedwith increased brain cyclic AMP. Nature 255, 159-162.
  3. Douglass, J., McKinzie, A. A. and Couceyro, P. R. (1995) PCR differentialdisplay identifies a rat brain mRNA that is transcriptionallyregulated by cocaine and amphetamine. J. Neurosci. 15, 2471-2481.
  4. Fagergren, P. and Hurd, Y. L. (1999) Mesolimbic gender differences inpeptide CART mRNA expression: effects of cocaine. Neuroreport.10, 3449-3452. https://doi.org/10.1097/00001756-199911080-00034
  5. Franklin, K. B. J., and Paxinos, G. (1997) The mouse brain in stereotaxiccoordinates (A. Press, Ed.), San Diego.
  6. Hemby, S. E. (2004) Morphine-induced alterations in gene expressionof calbindin immunopositive neurons in nucleus accumbens shelland core. Neurosci. 126, 689-703. https://doi.org/10.1016/j.neuroscience.2004.01.056
  7. Heyne, A. and Wolffgramm, J. (1998) The development of addiction tod-amphetamine in an animal model: same principles as for alcoholand opiate. Psychopharmacol (Berl). 140, 510-518. https://doi.org/10.1007/s002130050796
  8. Hunter, R. G., Vicentic, A., Rogge, G. and Kuhar, M. J. (2005) Theeffects of cocaine on CART expression in the rat nucleus accumbens:a possible role for corticosterone. Eur. J. Pharmacol. 517,45-50. https://doi.org/10.1016/j.ejphar.2005.05.025
  9. Hurd, Y. L. and Fagergren, P. (2000) Human cocaine- and amphetamine-regulated transcript (CART) mRNA is highly expressed inlimbic- and sensory-related brain regions. J. Comp. Neurol. 425,583-598. https://doi.org/10.1002/1096-9861(20001002)425:4<583::AID-CNE8>3.0.CO;2-#
  10. Jaworski, J. N., Kozel, M. A., Philpot, K. B. and Kuhar, M. J. (2003)Intra-accumbal injection of CART (cocaine-amphetamine regulatedtranscript) peptide reduces cocaine-induced locomotor activity. J.Pharmacol. Exp. Ther. 307, 1038-1044. https://doi.org/10.1124/jpet.103.052332
  11. Kalivas, P. W. (2007) Neurobiology of cocaine addiction: implicationsfor new pharmacotherapy. Am. J. Addict. 16, 71-78. https://doi.org/10.1080/10550490601184142
  12. Kalivas, P. W., Duffy, P., DuMars, L. A. and Skinner, C. (1988) Behavioraland neurochemical effects of acute and daily cocaine administrationin rats. J. Pharmacol. Exp. Ther. 245, 485-492.
  13. Kim, H. S., Park, W. K., Jang, C. G., Oh, K. W., Kong, J. Y., Oh, S.,Rheu, H. M., Cho, D. H. and Kang, S. Y. (1997) Blockade by naloxoneof cocaine-induced hyperactivity, reverse tolerance and conditionedplace preference in mice. Behav. Brain Res. 85, 37-46. https://doi.org/10.1016/S0166-4328(96)00162-3
  14. Koylu, E. O., Couceyro, P. R., Lambert, P. D. and Kuhar, M. J. (1998)Cocaine- and amphetamine-regulated transcript peptide immunohistochemicallocalization in the rat brain. J. Comp. Neurol. 391,115-132. https://doi.org/10.1002/(SICI)1096-9861(19980202)391:1<115::AID-CNE10>3.0.CO;2-X
  15. Kuczenski, R. and Segal, D. (1989) Concomitant characterization ofbehavioral and striatal neurotransmitter response to amphetamineusing in vivo microdialysis. J. Neurosci. 9, 2051-2065.
  16. Lane-Ladd, S. B., Pineda, J., Boundy, V. A., Pfeuffer, T., Krupinski,J., Aghajanian, G. K., and Nestler, E. J. (1997) CREB (cAMP responseelement-binding protein) in the locus coeruleus: biochemical,physiological, and behavioral evidence for a role in opiate dependence.J. Neurosci. 17, 7890-7901.
  17. Larsen, P. J. and Hunter, R. G. (2006) The role of CART in body weighthomeostasis. Peptides 27, 1981-1986. https://doi.org/10.1016/j.peptides.2005.11.027
  18. Leshner, A. I. (1997) Drug abuse and addiction treatment research.The next generation. Arch. Gen. Psychiatry 54, 691-694. https://doi.org/10.1001/archpsyc.1997.01830200015002
  19. Majewska, M. D. (1996) Cocaine addiction as a neurological disorder:implications for treatment. NIDA. Res. Monogr. 163, 1-26.
  20. Maldonado, R., Blendy, J. A., Tzavara, E., Gass, P., Roques, B. P., Hanoune,J. and Schutz, G. (1996) Reduction of morphine abstinencein mice with a mutation in the gene encoding CREB. Science 273,657-659. https://doi.org/10.1126/science.273.5275.657
  21. Mamiya, T., Noda, Y., Ren, X., Nagai, T., Takeshima, H., Ukai, M. andNabeshima, T. (2001) Morphine tolerance and dependence in thenociceptin receptor knockout mice. J. Neural Transm. 108, 1349-1361. https://doi.org/10.1007/s007020100012
  22. Marie-Claire, C., Laurendeau, I., Canestrelli, C., Courtin, C., Vidaud,M., Roques, B. and Noble, F. (2003) Fos but not Cart (cocaine andamphetamine regulated transcript) is overexpressed by severaldrugs of abuse: a comparative study using real-time quantitativepolymerase chain reaction in rat brain. Neurosci. Lett. 345, 77-80. https://doi.org/10.1016/S0304-3940(03)00307-0
  23. Morley, J. E., Yamada, T., Walsh, J. H., Lamers, C. B., Wong, H., Shulkes,A., Damassa, D. A., Gordon, J., Carlson, H. E. and Hershman,J. M. (1980) Morphine addiction and withdrawal alters brain peptideconcentrations. Life Sci. 26, 2239-2244. https://doi.org/10.1016/0024-3205(80)90208-8
  24. Nestler, E. J., Hope, B. T. and Widnell, K. L. (1993) Drug addiction: amodel for the molecular basis of neural plasticity. Neuron 11, 995-1006. https://doi.org/10.1016/0896-6273(93)90213-B
  25. Philpot, K. and Smith, Y. (2006) CART peptide and the mesolimbicdopamine system. Peptides. 27, 1987-1992. https://doi.org/10.1016/j.peptides.2005.11.028
  26. Pouletty, P. (2002) Drug addictions: towards socially accepted andmedically treatable diseases. Nat. Rev. Drug Discov. 1, 731-736. https://doi.org/10.1038/nrd896
  27. Qureshi, N. A., al-Ghamdy, Y. S. and al-Habeeb, T. A. (2000) Drug addiction:a general review of new concepts and future challenges.East Mediterr. Health J. 6, 723-733.
  28. Robinson, T. E. and Becker, J. B. (1986) Enduring changes in brainand behavior produced by chronic amphetamine administration: areview and evaluation of animal models of amphetamine psychosis.Brain Res. 396, 157-198. https://doi.org/10.1016/0165-0173(86)90002-0
  29. Roh, M. S., Cui, F. J., Ahn, Y. M. and Kang, U. G. (2009) Up-regulationof cocaine- and amphetamine-regulated transcript (CART) in therat nucleus accumbens after repeated electroconvulsive shock.Neurosci. Res. 65, 210-213. https://doi.org/10.1016/j.neures.2009.06.013
  30. Seress, L., Abraham, H., Doczi, T., Lazar, G. and Kozicz, T. (2004)Cocaine- and amphetamine-regulated transcript peptide (CART) isa selective marker of rat granule cells and of human mossy cells inthe hippocampal dentate gyrus. Neurosci. 125, 13-24. https://doi.org/10.1016/j.neuroscience.2003.12.035
  31. Sevarino, K. A., Oliveto, A. and Kosten, T. R. (2000) Neurobiologicaladaptations to psychostimulants and opiates as a basis of treatmentdevelopment. Ann. N. Y. Acad. Sci. 909, 51-87.
  32. Steiner, R. C., Hsiung, H. M. and Picciotto, M. R. (2006) Cocaine self-administration and locomotor sensitization are not altered in CARTknockout mice. Behav. Brain Res. 171, 56-62. https://doi.org/10.1016/j.bbr.2006.03.022
  33. Taylor, D. L., Ho, B. T. and Fagan, J. D. (1979) Increased dopaminereceptor binding in rat brain by repeated cocaine injections. Commun.Psychopharmacol. 3, 137-142.
  34. Terwilliger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M. andNestler, E. J. (1991) A general role for adaptations in G-proteinsand the cyclic AMP system in mediating the chronic actions of morphineand cocaine on neuronal function. Brain Res. 548, 100-110. https://doi.org/10.1016/0006-8993(91)91111-D
  35. Thim, L., Kristensen, P., Larsen, P. J. and Wulff, B. S. (1998) CART, anew anorectic peptide. Int. J. Biochem. Cell Biol. 30, 1281-1284. https://doi.org/10.1016/S1357-2725(98)00110-1
  36. Widnell, K. L., Russell, D. S. and Nestler, E. J. (1994) Regulation ofexpression of cAMP response element-binding protein in the locuscoeruleus in vivo and in a locus coeruleus-like cell line in vitro.Proc. Natl. Acad. Sci. USA. 91, 10947-10951. https://doi.org/10.1073/pnas.91.23.10947
  37. Widnell, K. L., Self, D. W., Lane, S. B., Russell, D. S., Vaidya, V. A.,Miserendino, M. J., Rubin, C. S., Duman, R. S. and Nestler, E.J. (1996) Regulation of CREB expression: in vivo evidence for afunctional role in morphine action in the nucleus accumbens. J.Pharmacol. Exp. Ther. 276, 306-315.
  38. Yang, S. C., Shieh, K. R. and Li, H. Y. (2005) Cocaine- and amphetamine-regulated transcript in the nucleus accumbens participatesin the regulation of feeding behavior in rats. Neurosci. 133, 841-851. https://doi.org/10.1016/j.neuroscience.2005.03.023