• Title/Summary/Keyword: Operational pH

Search Result 140, Processing Time 0.031 seconds

Effect of operational pH on anaerobic hydrogen fermentation of food waste (음식폐기물의 혐기성 수소 발효시 운전 pH의 영향)

  • Lee, Chae-Young;Lee, Se-Wook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.73-78
    • /
    • 2011
  • The pH is one of the most important factors affecting metabolism pathway and activity of hydrogen producing bacteria. The effect of operational pH on anaerobic hydrogen fermentation of food waste was evaluated at mesophilic condition. In this batch experiment, the initial pH was 8.0 and the operational pH was controlled at 4.7~7.0 by the addition of 5N KOH solutions. At the operational pH of 4.7, the lag phase and the maximum hydrogen production were 47.9h and 534.4 mL, respectively. The lag phase and the maximum hydrogen production were decreased as the operational pH increased. At the operational pH of 7.0, the lag phase and the maximum hydrogen production were 4.2 h and 213.8 mL, respectively.

Effect of pH on Hydrogen Fermentation of Food Waste with Livestock Wastewater (음식물쓰레기 수소발효 시 pH 영향 및 축산폐수와의 혼합 발효)

  • Jang, Hae-Nam
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.5-9
    • /
    • 2016
  • In the modern industrial society, huge amount of organic wastes have exceeded the society's self-cleaning capability, caused pollution of the whole environment, including water quality, soil, and the air, and become a big burden of waste treatment. Moreover, the emission of green house gases brought by the continual combustion of fossil fuels has facilitated the global warming. The simultaneous effect of initial and operational pH on $H_2$ yield was expressed using mathematical equation and optimized. The optimal initial and cultivation pH was 7.50 and 6.01, respectively. Addition of livestock wastewater to food waste substantially decreased the amount of alkali requirement and also improved the $H_2$ fermentation performance.

Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste (열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향)

  • Kim, Sang-Hyoun;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

Variation of Optimum Operational pH in Partial Nitritation (암모니아 폐수의 부분아질산화에서 최적 운전 pH의 변동)

  • Bae, Wookeun;Khan, Hammad
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.228-235
    • /
    • 2016
  • Nitrite accumulation is essential for constructing an anammox process. As the pH in the reactor exerts a complicated and strong influence on the reaction rate, we investigated its effects upon treatment of an ammonic wastewater (2,000 mgN/L) through modeling and experiment. The modeling results indicated that the reaction stability is strongly affected by pH, which results in a severe reduction of the 'stable region' of operation under alkaline environments. On a coordinate of the total ammonia nitrogen (TAN) concentration vs. pH, the maximal stable reaction rates and the maximal nitrite accumulation potentials could be found on the 'stability ridge' that separates the stable region from the unstable region. We achieved a stable and high ammonia oxidation rate (${\sim}6kgN/m^3-d$) with a nitrite accumulation ratio of ~99% when operated near the 'stability ridge'. The optimum pH that can be observed in experiments varies with the TAN concentrations utilized, although the intrinsic optimum pH is fixed. The direction of change is that the optimum operational pH falls as the TAN concentration increases, which is in excellent accordance with the observations in the literature. The optimum operational pH for 95% nitritation was predicted to be ~8.0, whereas it was ~7.2 for 55% partial nitritation to produce an anammox feed in our experimental conditions.

Influence of Different Operational pH Conditions to Microbial Community in Biological Sequencing Batch Phosphorus Removal Process (생물학적 회분식 인 제거 공정에서 pH 영향과 미생물 군집의 변화)

  • Ahn, Johwan;Seviour, Robert
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.459-465
    • /
    • 2013
  • A sequencing batch reactor was operated under different pH conditions to see the influence of pH to microbial community in enhanced biological phosphorus removal (EBPR) systems. Long term influences of different steady-state pH conditions on the microbial community composition were evaluated by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). The shift in populations from polyphosphate-accumulating organisms (PAOs) to Alphaproteobacteria was observed when pH was changed from 7.5 to 7.0. Alphaproteobacteria with the typical morphological traits of tetrad-forming organisms (TFOs) eventually became dominant members. The alphaproteobacterial TFOs were the phenotype expected for glycogen-accumulating organisms (GAOs), which accumulate large amount of glycogen into the cell. The results strongly suggested that low operational pH condition encourages the appearance of the GAOs in EBPR process, significantly reducing the EBPR capacity.

Parameter Optimization for Cost Reduction of Microbubble Generation by Electrolysis

  • Lucero, Arpon Jr;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • To lower the operational cost of microbubble generation by electrolysis, optimization of parameters limiting the process must be carried out for the process to be fully adopted in environmental and industrial settings. In this study, four test electrodes were used namely aluminum, iron, stainless steel, and Dimensionally Sable Anode (DSA). We identified the effects and optimized each operational parameter including NaCl concentration, current density, pH, and electrode distance to reduce the operational cost of microbubble generation. The experimental results showed that was directly related to the rate and cost of microbubble generation. Adding NaCl and narrowing the distance between electrodes caused no substantial changes to the generation rate but greatly decreased the power requirement of the process, thus reducing operational cost. Moreover, comparison among the four electrodes operating under optimum conditions revealed that aluminum was the most efficient electrode in terms of generation rate and operational cost. This study therefore presents significant data on performing costefficient microbubble generation, which can be used in various environmental and industrial applications.

Corrosion Control in Water Distribution System using Lime and Carbon Dioxide(I) - Determination of Optimum Operational Conditions in Lime Adding Process (소석회와 CO2를 이용한 상수관로의 부식제어(I) - 소석회 주입공정의 최적 운전인자 도출)

  • Sohn, Byung-Young;Byun, Kyu-Sik;Kim, Young-Il;Lee, Doo-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.373-378
    • /
    • 2008
  • The pH & alkalinity adjustment method by lime and carbon dioxide($CO_2$) for corrosion control in water distribution system was investigated to determine the optimum operational condition in lime adding process in water treatment plant(WTP). The mixing time at dissolution tank and sedimentation time at saturator for maintaining optimal turbidity condition of lime supernatant were 60~75 minutes and 75~95 minutes, respectively. There was no difference according to $CO_2$ adding methods such as $CO_2$ saturated water or $CO_2$ gas. But, $CO_2$ saturated water could be convenience at WTP in terms of pH control and quantitative dosing. To minimize generation of calcium carbonate products, the short time interval between adding of lime and $CO_2$ is most important. The lime should be added below 32 mg/l for preventing pH rising and generation of calcium carbonate products at the heating condition.

A Study on Design and Operational Factors of Rice Whitening Systems Consisting of Abrasive and Frictional Whiteners -Operational Criteria- (조합식(組合式) 정백(精白)시스템의 설계(設計) 및 작동인자(作動因子)에 관(關)한 연구(硏究)(II) -작동기준(作動基準) 설정(設定)-)

  • Noh, S.H.;Koh, H.K.;Lee, J.W.;Park, S.J.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.2
    • /
    • pp.28-37
    • /
    • 1987
  • Operation of rice whiteners has been depending on operator's experience only and very limitted data are available for operational criteria of rice whiteners in Korea. With developments of new rice varieties and with a tendency of automation of machine operations for precision control, operational criteria depending on physical characteristics of rice grains arc required for an improvement of milled rice recovery and the performance of rice whitening systems. An experimental study was conducted to identify operational criteria of a rice whitening system consisted with an abrasive-aerated whitener developed newly and a frictional-aerated whitener being used commercially. Further, comparisons were made between the performance of the rice whitening system adopted for this study and a commercial system used in small scale milling plants. Results of this study are summarized as follows: 1. Total number of passes necessary for the final white rice in the combined whitening system depended exclusively on the counter pressure level of the frictional whitener successive to the abrasive whitener. 2. The counter pressure required for whitening Japonica type rice variety (Akibare) was higher by about 1.6 times than that for Japonica type (Pung-san), when other conditions were kept at the same. 3. Radial pressure in the whitening chamber of the frictional whitener should be maintained between 1.5 to $2.1kg/cm^2$ for the completion of whitening within 5 to 3 passes regardless of rice varieties. Hence, it was found that the radial pressure in the whitening chamber could be used as an operational criteria to control the counter pressure level. 4. The following regression equation was found between radial pressure($R_p$) in whitening chamber and electric power consumption of the whitening system: $$EPC=-0.545\;R^2_p+1.277\;R_p+0.874[KWH/100kg]$$ 5. The following multiple regression equation was found among radial pressure ($R_p$), counter pressure ($C_p$), and bioyield point ($B_i$), length (L) and width (W) of brown rice. $$R_p/(B_i/W^2)=0.547\{C_p/(B_i/W^2)\}^{0.365}(L/W)^{0.120}(R^2=0.9897)$$ 6. The milled rice recovery and machine efficiency (kg/KWH) from the combined whitening system were higher by about 2.0% point and by 15 to 27% point than those from the conventional system, respectively.

  • PDF

Treatment of Refractory Dye Wastewater Using AOPs (고도산화공정(AOPs)을 이용한 난분해성 염색폐수 처리)

  • Kim, Jong-Oh;Lee, Kwon-Ki;Jung, Jong-Tae;Kim, Young-Noh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.21-29
    • /
    • 2006
  • The treatment performance of ozonation and three types of advanced oxidation processes (AOPs) such as $O_3/H_2O_2$, $O_3/UV$, $O_3/H_2O_2/UV$ was experimentally investigated for the treatment of refractory synthetic dye wastewater. The removal efficiency of $COD_{cr}$, color and biodegradability ($BOD_5/COD_{cr}$) were relatively evaluated in each treatment unit with simulated dye wastewater. Optimal operational conditions of pH, temperature, dosage and circulation flow rate were also investigated. All suggested processes revealed an effectiveness for the removal of color within a short operational time, moreover, $O_3/H_2O_2/UV$ process showed the highest $COD_{cr}$ removal and biodegradability enhancement among proposed oxidation process.

  • PDF

Studies on Microbial Penicillin Amidase (Part 6) Immobilization of Penicillin Amidase from Bacillus megaterium by Adsorption and Acrylamide Gel Entrappment (미생물 페니실린 아미다제에 관한 연구 (제 6 보) 흡착효소의 아크릴아마이드젤 포괄방법에 의한 Bacillus megaterium의 변이주가 생산하는 페니실린 아미다제의 고정화에 관한 연구)

  • Seong, Baik-Lin;Son, Hyeung-Jin;Mheen, Tae-Ick;Moon H. Han
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 1981
  • Penicillin amidase of Bacillus megaterium was recovered from the fermentation broth by adsorption on celite and immobilized by entrapping the adsorbed enzyme in acrylamide gel. The operational stability in column reactor was greatly increased by entrappment as compared with that of without entrappment. The optimum pH of the immobilized enzyme was 8.7 with broader activity profile than that of the free enzyme, while the most stable pH range appeared to be between pH 7.5 and 8.0. The optimum temperature was shifted to 5$0^{\circ}C$ from 45$^{\circ}C$ for the soluble enzyme. The values of Km and the inhibition constants for 6-APA( $K_{ia}$ ) and phenylacetic acid ( $K_{ip}$ ), were 4.55 mM, 36.5mM, and 10.5mM, respectively. No significant internal pore diffusion limitation was found since the value of effectiveness factor was 0.95. The operational half life in a column reactor at pH 8.0 was 6.8 days at 4$0^{\circ}C$ and 47 days at 3$0^{\circ}C$, whereas that of without entrappment was only 1 day and 4 days, respectively. The performance of a batch and a column reactor was also discussed with respect to the productivity. The results demonstrated that the entrappment of an adsorbed enzyme for the enhancement of the operational stability of the immobilized enzyme was useful especially when an extracellular enzyme was used.

  • PDF