• Title/Summary/Keyword: Operational modes

Search Result 206, Processing Time 0.025 seconds

Effects of membrane orientation on permeate flux performance in a submerged membrane bioreactor

  • Lee, Tsun Ho;Young, Stephanie
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.141-149
    • /
    • 2012
  • The aeration provided in a Submerged Membrane Bioreactor (SMBR) improves membrane filtration by creating turbulence on the membrane surface and reducing membrane resistance. However, conventional hollow fiber membrane modules are generally packed in a vertical orientation which limits membrane scouring efficiency, especially when aeration is provided in the axial direction. In the present research, 3 innovative hollow-fiber membrane modules, each with a different membrane orientation, were developed to improve membrane scouring efficiency and enhance permeate flux. Pilot testing was performed to investigate the permeate flux versus time relationship over a 7-day period under different intermittent modes. The results indicated that the best module experienced an overall permeate flux decline of 3.3% after 7 days; the other two modules declined by 13.3% and 18.3%. The lower percentage of permeate flux decline indicated that permeate productivity could be sustained for a longer period of time. As a result, the operational costs associated with membrane cleaning and membrane replacement could be reduced over the lifespan of the module.

Fast built-in current sensor for $\textrm{I}_{DDQ}$ testing ($\textrm{I}_{DDQ}$ 테스팅을 위한 빠른 재장형 전류감지기)

  • 임창용;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.811-814
    • /
    • 1998
  • REcent research about current testing($\textrm{I}_{DDQ}$ testing) has been emphasizing that $\textrm{I}_{DDQ}$ testing in addition to the logical voltage testing is necessary to increase the fault coverage. The $\textrm{I}_{DDQ}$. testing can detect physical faults other than the classical stuck-at type fault, which affect reliability. One of the most critical issues in the $\textrm{I}_{DDQ}$ testing is to insert a built-in current sensor (BICS) that can detect abnormal static currents from the power supply or to the ground. This paper presents a new BICS for internal current testing for large CMOS logic circuits. The proposed BICS uses a single phase clock to minimize the hardware overhead. It detects faulty current flowing and converts it into a corresponding logic voltage level to make converts it into a corresponding logic voltage level to make it possible to use the conventional voltage testing techniqeus. By using current mirroring technique, the proposed BICS can work at very high speed. Because the proposed BICS almost does not affects normal operation of CUT(circuit under test), it can be used to a very large circuit without circuit partitioning. By altenating the operational modes, a circuit can be $\textrm{I}_{DDQ}$-tested as a kind of self-testing fashion by using the proposed BICS.

  • PDF

A Study on the Seaborne Collision Avoidance System Using the Airborne CAS

  • KANG, Jeong-gu;PARK, Jin-Soo;PARK, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.65-72
    • /
    • 2020
  • Mankind has been using ships for more than 5,000 years and has developed a range of related technologies. However, despite such a long history, compared to aircraft with a history of approximately one century, the pace of progress has been markedly slow. Even though technological progress of ships or the installation of various navigation equipment have been achieved, seaborne collisions have occurred quite frequently. This study analyzed the TCAS( Traffic Collision Avoidance System) that has contributed to the prevention of collisions with other transport methods including aircraft to suggest a collision avoidance system that can be deployed for ships. To apply the technologies applied to aircraft that move in 3D to ships that move in 2D, the difference in the operational environment between the two modes was analyzed to identify elements that need to be applied to ships. The suggested display of data on the collision prevention system is one that manipulates the augmented reality display device used in automobiles that over the past few years has undergone rapid development. Based on the presentation of technological elements that need to be considered when adopting the SCAS or the Seaborne Collision Avoidance System as suggested in this study, the authors hope to contribute to the prevention of collisions.

Mount Design of Helicopter FLIR Sensor Using Experimental Dynamic Model (실험적 동적 모델을 이용한 헬기용 FLIR 센서의 마운트 설계)

  • 조기대
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1129-1136
    • /
    • 2004
  • The structural modification to install a heavy sensor was made at the front extremities of the foreign-produced helicopter operated in the Korea Navy Mounting the sensor directly to the nose structure is unlikely to be practical because it lowers a dynamic mode of the airframe close to rotor blade passing frequencies, leading to increased helicopter vibration. Unfortunately we have no information on dynamic characteristics of the imported helicopter. So the experimental modal model derived from shake testing on the overall airframe of a working helicopter was used to solve the sensor Installation problems. The sensitivity analysis was done to evaluate what the best of modification woo)d be. Simple ID model and experimental modal data for mount system with sensor were Incorporated into overall dynamic model to assess the effects of the sensor installation on helicopter. Modal testing for the modified helicopter shows that the airframe modes are sufficiently displaced from rotor passing frequencies. The mount system has been proven fight to be sufficiently stable to meet vibration-level requirement for all required operational profiles.

Modal parameter identification of in-filled RC frames with low strength concrete using ambient vibration

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.137-149
    • /
    • 2014
  • In this study, modal parameters such as natural frequencies, mode shapes and damping ratios of RC frames with low strength are determined for different construction stages using ambient vibration test. For this purpose full scaled, one bay and one story RC frames are produced and tested for plane, brick in-filled and brick in-filled with plaster conditions. Measurement time, frequency span and effective mode number are determined by considering similar studies and literature. To obtain experimental dynamic characteristics, Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques are used together. It is shown that the ambient vibration measurements are enough to identify the most significant modes of RC frames. The results indicate that modal parameters change significantly depending on the construction stages. In addition, Infill walls increase stiffness and change the mode shapes of the RC frame. There is a good agreement between mode shapes obtained from brick in-filled and in-filled with plaster conditions. However, some differences are seen in plane frame, like expected. Dynamic characteristics should be verified using finite element analysis. Finally, inconsistency between experimental and analytical dynamic characteristics should be minimize by finite element model updating using some uncertain parameters such as material properties, boundary condition and section properties to reflect the current behavior of the RC frames.

A Study of Interface between Photovoltaic System and Utility Line using a Current-Source PWM Inverter based on Buck-boost topology (Buck-Boost 형태의 전류형 PWM 인버터를 이용한 태양광 발전과 계통연계에 관한 연구)

  • 주성용;양근령;강필순;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.36-42
    • /
    • 2003
  • This paper presents a new current-source PWM inverter based on Buck-boost configuration to interface between photovoltaic system and utility line. Proposed inverter is consisted by two set of buck-boost topology, and the input inductor is designed to be operated on the discontinuous current conduction mode. So high power factor can be achieved without additional input CtUTent controller. As a result, overall system has simple structure, and it can obtain higher ac output rms voltage than the terminal voltage of the photovoltaic system without additional boosting procedure. The operational modes are theoretically analyzed, and then the validity of the proposed system was verified through simulation and experimental results using a prototype.

Heat-Electric Power Ratio Optimization To Maximize Profit of a Cogeneration Power Plant (열병합 발전기 수익 극대화를 위한 열전비 최적화)

  • Kim, Gun-Hoe;Lee, Jae-Heon;Moon, Seung-Jae;Chang, Taek-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.381-384
    • /
    • 2008
  • This paper presents an operational technique to maximize profit of a cogeneration power plant. To minimize errors in a loss and gain analysis of a cogeneration power plant, the energy sale profit in the cost-based-pool electric power trade market, the heat sale profit, and the supplementary fund profit for electric power industry are taken into consideration. The objective is to optimize the heat-electric power ratio to maximize profit of a cogeneration power plant. Furthermore, the constrained bidding technique to optimize heat-electric power ratiocan be obtained. Profits from of a cogeneration power plant are composed of three categories, such as the energy sale profit in the cost-based-pool electric power trade market, the heat sale profit, and the supplementary fund profit for electric power industry. Profits of a cogeneration power plant are varied enormously by the operation modes. The profits are mainly determined by the amount of constrained heat generation in each trading time. And the three profit categories arecoupled tightly via the heat-electric power ratio. The result of this case study can be used as a reference to a cogeneration power plant under the power trading system considered in this case.

  • PDF

Current-Source PWM Inverter Equipped with DSP for Photovoltaic System (DSP를 이용한 태양광 발전 시스템용 전류형 PWM 인버터)

  • 박성준;허권행;강필순;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.437-442
    • /
    • 2002
  • This paper presents a current-source-inverter based on a buck-boost configuration md its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150[W] prototype equipped with digital signal processor TMS320F241.

A Test Procedure for Road Noise Evaluation (승용차의 도로면 소음 평가를 위한 시험절차 고찰)

  • 조영호;고강호;허승진;국형석;김찬묵;기지현;최윤봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.980-985
    • /
    • 2002
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual loading and find noise sources very easily. finally, the transfer function analysis is used to identify noise paths through the chassis system. However, all of the tests above mentioned must be performed to evaluate road booming noise. The objectives and the procedures of the tests are described in this paper. Also, the guideline for efficient road noise evaluation test can be found.

  • PDF

A Study of Smoke Exhaust Facility Operation of Subway Platform with Installation of Platform Screen Door (승강장 스크린도어 설치에 따른 배연설비운영에 대한 연구)

  • Rie, Dong-Ho;Ko, Jae-Woong;Kim, Ha-Young
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.35-40
    • /
    • 2006
  • A study on fire phenomena in a subway transit mass station has been carried out as a part of disaster prevention plan at the subway station. The ventilation facilities installed in both the platform and the trackway are designed to convert into a smoke exhaust system in emergency situation, creating such an environment as necessary for evacuation. 3 dimensional Numerical Simulations based on the CFD are carried out using a simulation tool, Fire Dynamic Simulator. Additionally, four different vent modes are made and performances are compared with the original design mode and each other to find better operation of vents at both the platform and the trackway in case of fire. From the result, an vent operational characteristics under the condition of installed PSD is clarified for the effective smoke and heat removal from the platform area compared with non installed PSD.