• Title/Summary/Keyword: Operational Stress

Search Result 186, Processing Time 0.026 seconds

Effects of Repair Weld of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzle on J-Groove Weldment Using Finite Element Analysis (유한요소법을 이용한 원자로 상부헤드 CRDM 관통노즐 J-Groove 보수용접 영향 분석)

  • Kim, Ju Hee;Yoo, Sam Hyeon;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.637-647
    • /
    • 2014
  • In pressurized water reactors, the upper head of the reactor pressure vessel (RPV) contains numerous control rod drive mechanism (CRDM) nozzles. These nozzles are fabricated by welding after being inserted into the RPV head with a room temperature shrink fit. The tensile residual stresses caused by this welding are a major factor in primary water stress corrosion cracking (PWSCC). Over the last 15 years, the incidences of cracking in alloy 600 CRDM nozzles have increased significantly. These cracks are caused by PWSCC and have been shown to be driven by the welding residual stresses and operational stresses in the weld region. Various measures are being sought to overcome these problems. The defects resulting from the welding process are often the cause of PWSCC acceleration. Therefore, any weld defects found in the RPV manufacturing process are immediately repaired by repair welding. Detailed finite-element simulations for the Korea Nuclear Reactor Pressure Vessel were conducted in order to predict the magnitudes of the repair weld residual stresses in the tube materials.

Simulation study of magnetorheological testing cell design by incorporating all basic operating modes

  • Mughni, Mohd J.;Mazlan, Saiful A.;Zamzuri, Hairi;Yazid, Izyan I.M.;Rahman, Mohd A.A.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.901-916
    • /
    • 2014
  • Magnetorheological (MR) fluid is one of the field-responsive fluids that is of interest to many researchers due to its high yield stress value, which depends on the magnetic field strength. Similar to electrorheological (ER) fluid, the combination of working modes is one of the techniques to increase the performance of the fluids with limited focus on MR fluids. In this paper, a novel MR testing cell incorporated with valve, shear and squeeze operational modes is designed and constructed in order to investigate the behaviour of MR fluid in combined mode. The magnetic field distribution in the design concept was analyzed using finite element method in order to verify the effective areas of each mode have the acceptable range of flux density. The annular gap of valve and shear were fixed at 1 mm, while the squeeze gap between the parallel circular surfaces was varied up to 20 mm. Three different coil configurations, which were made up from 23 SWG copper wires were set up in the MR cell. The simulation results indicated that the magnetic field distributed in the squeeze gap was the highest among the other gaps with all coils were subjected to a constant applied current of 1 A. Moreover, the magnetic flux densities in all gaps were in a good range of magnitude based on the simulations that validated the proposed design concept. Hence, the 3D model of the MR testing cell was designed using Solidworks for manufacturing processes.

Development 2.0: Principles and Warnings for Leveraging Advances in Information Communication Technologies for Improved Development Efforts

  • Kang, Christina Soyeon;Lal, Bhavya
    • STI Policy Review
    • /
    • v.1 no.3
    • /
    • pp.25-37
    • /
    • 2010
  • Advances in Information Communication Technologies (ICT) have demonstrated tremendous potential for solving development challenges and improving development processes, culminating in the new Development 2.0. Many development practitioners have embraced ICT (particularly on Web 2.0 and mobile phone technologies and applications), which have become hot topics in both the development community and the policy community as they engage in development practice and dialogue. Despite this excitement, there lacks among the policy community a robust understanding of the powers and pitfalls of ICT in development, executed actions to back the excited chatter, and dissemination of this understanding to practitioners and policymakers alike. We conducted a literature review, interviewed experts, and engaged in discussion with leaders in international development and science and technology policy to provide an operational framework base in which to view ICT in development. This framework regards ICT as tools that support more effective and efficient community development actions and appropriate consideration of general guidelines, which enable better engagement across and within sectors and individuals. Flexibility and accountability are critical requirements pervading throughout the various actions and guidelines, which promote transparent, partnership-based, and sustainable development. We highlight the strengths and weaknesses of ICT to focus on the cautions to keep ICT access and distribution in context, understand the various levels of technologies and services, and dig below the surface as excitement about ICT increases and threatens to become a short-term solution. We offer ideas for specific programs that policymakers can implement to contribute to a more efficient and effective development process to ultimately support global human development, but stress the endless possibilities that can be explored with creativity and flexibility beyond what is proposed here.

Elevated temperature resistance of concrete columns with axial loading

  • Alaskar, Abdulaziz;Alyousef, Rayed;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.355-365
    • /
    • 2020
  • The influence of temperature on the material of concrete filled columns (CFCs) under axial loading has been quantitatively studied in this research. CFCs have many various advantages and disadvantages. One of the important inefficiency of classic CFCs design is the practical lack of hooped compression under the operational loads because of the fewer variables of Poisson's rate of concrete compared to steel. This is the reason why the holder tends to break away from the concrete core in elastic stage. It is also suggested to produce concrete filled steel tube columns with an initial compressed concrete core to surpass their design. Elevated temperatures have essentially reduced the strengths of steel tubes and the final capacity of CFCs exposed to fire. Thus, the computation of bearing capacity of concrete filled steel tube columns is studied here. Sometimes, the structures of concrete could be exposed to the high temperatures during altered times, accordingly, outcomes have shown a decrement in compressive-strength, then an increase with the reduction of this content. In addition, the moisture content at the minimal strength is declined with temperature rising. According to Finite Element (FE), the column performance assessment is carried out according to the axial load carrying capacities and the improvement of ductility and strength because of limitations. Self-stress could significantly develop the ultimate stiffness and capacity of concrete columns. In addition, the design equations for the ultimate capacity of concrete columns have been offered and the predictions satisfactorily agree with the numerical results. The proposed based model (FE model of PEC column) 65% aligns with the concrete exposed to high temperature. Therefore, computed solutions have represented a better perception of structural and thermal responses of CFC in fire.

Development of Impact-based Heat Health Warning System Based on Ensemble Forecasts of Perceived Temperature and its Evaluation using Heat-Related Patients in 2019 (인지온도 확률예보기반 폭염-건강영향예보 지원시스템 개발 및 2019년 온열질환자를 이용한 평가)

  • Kang, Misun;Belorid, Miloslav;Kim, Kyu Rang
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.195-207
    • /
    • 2020
  • This study aims to introduce the structure of the impact-based heat health warning system on 165 counties in South Korea developed by the National Institute of Meteorological Sciences. This system was developed using the daily maximum perceived temperature (PTmax), which is a human physiology-based thermal comfort index, and the Local ENSemble prediction system for the probability forecasts. Also, A risk matrix proposed by the World Meteorological Organization was employed for the impact-based forecasts of this system. The threshold value of the risk matrix was separately set depending on regions. In this system, the risk level was issued as four levels (GREEN, YELLOW, ORANGE, RED) for first, second, and third forecast lead-day (LD1, LD2, and LD3). The daily risk level issued by the system was evaluated using emergency heat-related patients obtained at six cities, including Seoul, Incheon, Daejeon, Gwangju, Daegu, and Busan, for LD1 to LD3. The high-risks level occurred more consistently in the shorter lead time (LD3 → LD1) and the performance (rs) was increased from 0.42 (LD3) to 0.45 (LD1) in all cities. Especially, it showed good performance (rs = 0.51) in July and August, when heat stress is highest in South Korea. From an impact-based forecasting perspective, PTmax is one of the most suitable temperature indicators for issuing the health risk warnings by heat in South Korea.

Study on Space Organization Based on Significance Assessment of Interior Space Factors at 119 Safety Center (119 안전센터 실내공간요소 중요도 평가에 의한 공간구성연구)

  • Kim, Sung-Ju;Kim, Moon-Duk
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.4
    • /
    • pp.257-266
    • /
    • 2014
  • This study has been performed to come up with any rational way for responding to the functions of fire-fighting spaces newly required by the changing social paradigms and to seek for the approach to designing fire-fighting spaces by taking into account the psychological and behavioral factors of fire-fighters who are exposed stress of operations. In particular, it is to satisfy any physical and functional requirements as special working-spaces and to reflect the psychological and behavioral approach to the workers who are forced to be at standby for a long time, which is the characteristic of their operation, to designing. Accordingly, for fundamental appreciation of whether or not such space programs as space organization needed for operational function are being practiced actively, the fire-fighting headquarters of Incheon City has been selected for the research. First, in the process of assessing the trend of organizing the space at safety centers for the recent 20 years, those built more than 20 years ago were left out from the space selection for the research. Second, those with less than 20 operators also were excluded. Third, among those completed in the same year, only one was selected, which was to avoid overlapping, with the consideration its regional representative nature for applying the safety centers in the jurisdiction of the headquarters equally. The study was performed through the visits to and the actual inspections by surveys at the selected 119 Safety Centers as well as the reviews of literature based on case studies. And for the assessment of significance, surveys and analysis of reliability and factors were carried out. The actual users of Safety Centers were picked as objects for the assessment of significance of space factors at 119 Safety Centers, which revealed that there are five types of dimensions for factor-analyzing standard with which users estimate any significance, which are "Area of Mobilization Preparation and Return" "Area of Standby" "Area of Working Activities" "Area of Employ Welfare" and "Area of Support".

Development of a Vertebral Fusion Device and Its Mechanical Analysis using 3-D Finite Element Method (척추용 퓨전 디바이스의 개발 및 3차원 유한요소법을 이용한 역학적 해석)

  • 김현수;전병찬;손한철;최경호;박정호;최태원
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.385-390
    • /
    • 2002
  • Nowadays, there are many attempts to develop domestic medical-equipments. In this study, it is performed to developed a new vertebral fusion device. The basic models are a rectangular-frame type and a screw type which are generally used for the patients. The main purpose of the development of a new device is to reduce the amount of bone taken out for the insertion of a device to vertebral disc and this paper is focused on th concept of a new device shape. In the results, two types are devised. One is a folding type and the other is a separate-push-in type device both are in primitive stage. However, in a folding type there are mechanical pins and the analysis of pins and the lock system is still in study and needs some time. Therefore a separate-push-in type is introduced in this study mainly and a prototype and 3-D finite element model are made and experimented and stress analyzed. From the results it is considered that it is stable for the basic loading condition of vertebra, however, it is required to develop a supporting operational equipment for the convenience of the operation in practice.

Sustain Driver and Reset Circuit for Plasma Display (플라즈마 디스플레이를 위한 서스테인 및 리셋 회로)

  • Kang, Feel-Soon;;Park, Jin-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.685-688
    • /
    • 2005
  • An efficient sustain driver and a useful reset circuit composition technique are proposed for plasma display panel drive. The proposed sustain driver uses a series resonance between an external inductor and a panel to recover the energy dissipated by a capacitive displacement current of PDP. It consists of four switching devices, an inductor, and external capacitors, which supply sustain voltage sources. Although the amplitude of an input voltage source is twice as high as that of conventional sustain drivers, average voltage stress imposed on power switching devices is nearly same in their values. Moreover, the input voltage source can be directly applied for the use of a reset voltage source. Owing to this scheme, the proposed sustain driver and the embedded reset circuit have a simple configuration. The operational principle and design example are given with theoretical analyses. The validity of the proposed drive system is verified through experiments using a prototype equipped with a 7.5-inch-diagonal AC plasma display panel.

  • PDF

Test Standard for Reliability of Automotive Semiconductors: AEC-Q100 (자동차 반도체의 신뢰성 테스트 표준: AEC-Q100)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.578-583
    • /
    • 2021
  • This paper describes acceleration tests for reliability of semiconductors. It also describes AEC-Q100, international test standard for reliability of automotive semiconductors. Semiconductors can be used for dozens of years. So acceleration tests are essential to test potential problems over whole period of product where test time is minimized by applying intensive stresses. AEC-Q100 is a typical acceleration test in automotive semiconductors, and it is designed to find various failures in semiconductors and to analyze their causes of occurance. So it finds many problems in design and fabrication as well as it predicts lifetime and reliability of semiconductors. AEC-Q100 consists of 7 test groups such as accelerated environmental stress tests, accelerated lifetime simulation tests, package assembly integrity tests, die fabrication reliability tests, electrical verification tests, defect screening tests, and cavity package integrity tests. It has 4 grades from grade 0 to grade 3 based on operational temperature. AEC-Q101, Q102, Q103, Q104, and Q200 are applied to discrete semiconductors, optoelectronic semiconductors, sensors, multichip modules, and passive components, respectively.

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen ;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3423-3440
    • /
    • 2023
  • In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.