• Title/Summary/Keyword: Operating schedule

Search Result 156, Processing Time 0.024 seconds

Algorithms for Production Planning and Scheduling in an Assembly System Operating on a Make-to-Order Basis (주문생산방식을 따르는 조립시스템에서의 생산계획 및 일정계획을 위한 알고리듬)

  • Park, Moon-Won;Kim, Yeong-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.345-357
    • /
    • 1998
  • This paper focuses on production planning and scheduling problems in an assembly system operating on a make-to-order basis. Due dates are considered as constraints in the problems, that is, tardiness is not allowed. Since the planning problem is a higher-level decision making than the scheduling problem, the scheduling problem is solved using a production plan obtained by solving the planning problem. We suggest heuristic procedures in which aggregated information is used when the production planning problem is solved while more detailed information is used when the scheduling problem is solved. Since a feasible schedule may not be obtained from a production plan, an iterative approach is employed in the two procedures to obtain a solution that is feasible for both the production planning and scheduling problems. Computational tests on randomly generated test problems are done to show the performance of these algorithms, and results are reported.

  • PDF

Study on Standard Operating Conditions for Office Buildings (사무소 건물의 표준운전상태에 관한 연구)

  • Park Sang Dong;Oh Chang Sup;Won Joung Son;Tae Choon Seup
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.1
    • /
    • pp.48-63
    • /
    • 1984
  • Standard Building Operation Conditions(SBOC) is to describe typical conditions under which a building would operate during the coulee of a day In order to develop SBOC profiles for office building, we surveyed the operating conditions of randomly selected 20 existing office buildings in Seoul by means of enquetes, and made SBOC profiles. SBOC profiles consist of human occupancy profile, light ins usage profile, system schedule and domestic hot water profile etc. SBOC profiles will be used as input data of DOE-2 computer program to estimate DER(Design Energy Requirements) and to develop EBL (Energy Budget Level), SBOC profiles are not meant to be exact description of how a building will actually be used by its respective users. Rather they are intended to be reasonable typical project ions of how buildings might be used.

  • PDF

A Power-Aware Scheduling Algorithm by Setting Smoothing Frequencies (주파수 평활화 기법을 이용한 전력 관리 알고리즘)

  • Kweon, Hyek-Seong;Ahn, Byoung-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.78-85
    • /
    • 2008
  • Most researches for power management have focused on increasing the utilization of system performance by scaling operating frequency or operating voltage. If operating frequency is changed frequently, it reduces the real system performance. To reduce power consumption, alternative approaches use the limited number of operating frequencies or set the smoothing frequencies during execution to increase the system performance, but they are not suitable for real time applications. To reduce power consumption and increase system performance for real time applications, this paper proposes a new power-aware schedule method by allocating operating frequencies and by setting smoothing frequencies. The algorithm predicts so that frequencies with continuous interval are mapped into discrete operating frequencies. The frequency smoothing reduces overheads of systems caused by changing operating frequencies frequently as well as power consumption caused by the frequency mismatch at a wide frequency interval. The simulation results show that the proposed algorithm reduces the power consumption up to 40% at maximum and 15% on average compared to the CC RT-DVS.

The Relationship between Energy Consumption and Factors Affecting Heating and Cooling

  • Park, Kwon Sook;Kim, Seiyong
    • Architectural research
    • /
    • v.19 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • Energy consumption in university building has steadily increased over the last decade, and a strong upward trend in recent years. This study was undertaken to analyze the relationship between energy consumption and their affecting factors, six academic buildings were considered. The factors limited to heating and cooling, which is the main end use (nearly 60 per cent of total energy consumption in university buildings), encompassing system and operating schedules (user activity) and area use. To understand how to building is used, operated and managed, walk-through assessment was conducted as well as interview with university staff. The results show that the energy consumption of the humanities building was somewhat smaller than the consumption of the science and engineering building, and its range was from $31.26kgoe/m^2$ to $23.52kgoe/m^2$, depending on heating and cooling system and area use. And the energy consumption of the science and engineering building was related to operating schedules (user activity) as well as laboratory equipment characteristics. More analysis on a larger number of buildings is required in the future, including building form and material performance level to generalize the significant factors influencing building energy consumption.

EP Based PSO Method for Solving Multi Area Unit Commitment Problem with Import and Export Constraints

  • Venkatesan, K.;Selvakumar, G.;Rajan, C. Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.415-422
    • /
    • 2014
  • This paper presents a new approach to solve the multi area unit commitment problem (MAUCP) using an evolutionary programming based particle swarm optimization (EPPSO) method. The objective of this paper is to determine the optimal or near optimal commitment schedule for generating units located in multiple areas that are interconnected via tie lines. The evolutionary programming based particle swarm optimization method is used to solve multi area unit commitment problem, allocated generation for each area and find the operating cost of generation for each hour. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie lines depends upon the operating cost of generation at each hour and tie line transfer limits. Case study of four areas with different load pattern each containing 7 units (NTPS) and 26 units connected via tie lines have been taken for analysis. Numerical results showed comparing the operating cost using evolutionary programming-based particle swarm optimization method with conventional dynamic programming (DP), evolutionary programming (EP), and particle swarm optimization (PSO) method. Experimental results show that the application of this evolutionary programming based particle swarm optimization method has the potential to solve multi area unit commitment problem with lesser computation time.

Realization of Elevator Display System with Operating Schedule Information(EDOSI) (엘리베이터 운행 예정 정보 표시기 구현)

  • Shin Seung-Sik;Yu Bong-Sun
    • The KIPS Transactions:PartA
    • /
    • v.12A no.1 s.91
    • /
    • pp.65-70
    • /
    • 2005
  • The elevator system which is operated nowadays at skyscrapers, apartments and enterprises does not offer standby passengers any information of which floor the elevator is going to stop or skip. This study will introduce the system that shows the Passengers a running schedule of the elevator. If this system is utilized for current systems, it will bring so much benefit such as shortening waiting time or choosing alternatives for the passengers. Furthermore, this system will be set up not stopping the floor for the passengers who choose alternatives like using stairs or escalators with using toggle switches. This will be efficient to save the electric power.

A Case Study for a Process/Layout Design of a Sikhye Production Line (식혜(食醯) 생산(生産)라인의 공정(工程)/배치(配置) 설계(設計)에 대한 사례 연구)

  • Yang, Moon-Hee
    • IE interfaces
    • /
    • v.16 no.4
    • /
    • pp.450-462
    • /
    • 2003
  • In this paper, we deal with a process and layout design for producing a planned amount of Sikhye in a given limited time period under a reasonable production schedule. We represent a Sikhye production line as a vector N, the element of which denotes the number of tanks required in each process and our objective is to find an appropriate vector which minimizes the total investment cost. We suggest a systematic method for finding an appropriate N and an appropriate layout to N. In detail, first, we decide the required sequence of processes and the required operations for each process and we estimate standard operating times. Second, constructing a precedence diagram, we find a critical path in order to reduce the total production lead time for a batch of Sikhye. Third, given a limited N space, we manage to construct manually each production schedule using both the processing times of the critical operations and transfer times. Finally, we find an optimal vector N which gives a minimum investment cost and meets both the time constraint and quantity constraint. In addition, with the estimated relative size of each tank, we suggest an appropriate conceptual layout design including an expansion area for future demands, based on the span technique used in the field of architectural design.

A Study on the Multi-level Optimization Method for Heat Source System Design (다단계 최적화 수법을 이용한 열원 설비 설계법에 관한 연구)

  • Yu, Min-Gyung;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.299-304
    • /
    • 2016
  • In recent years, heat source systems which have a principal effect on the performance of buildings are difficult to design optimally as a great number of design factors and constraints in large and complicated buildings need to be considered. On the other hand, it is necessary to design an optimum system combination and operation planning for energy efficiency considering Life Cycle Cost (LCC). This study suggests a multi-level and multi-objective optimization method to minimize both LCC and investment cost using a genetic algorithm targeting an office building which requires a large cooling load. The optimum method uses a two stage process to derive the system combination and the operation schedule by utilizing the input data of cooling and heating load profile and system performance characteristics calculated by dynamic energy simulation. The results were assessed by Pareto analysis and a number of Pareto optimal solutions were determined. Moreover, it was confirmed that the derived operation schedule was useful for operating the heat source systems efficiently against the building energy requirements. Consequently, the proposed optimization method is determined by a valid way if the design process is difficult to optimize.

An Evaluation of Chiller Control Strategy in Ice Storage System for Cost-Saving Operation (운전비 절감을 위한 빙축열시스템 냉동기 운전기법 평가)

  • Lee, Kyoung-Ho;Choi, Byoung-Youn;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • This paper presents simulated and experimental test results of optimal control algorithm for an encapsulated ice thermal storage system with full capacity chiller operation. The algorithm finds an optimal combination of a chiller and/or a storage tank operation for the minimum total operation cost through a cycle of charging and discharging. Dynamic programming is used to find the optimal control schedule. The conventional control strategy of chiller-priority is the baseline case for comparing with the optimal control strategy through simulation and experimental test. Simulation shows that operating cost for the optimal control with chiller on-off operation is not so different from that with chiller part load capacity control. As a result from the experimental test, the optimal control operation according to the simulated operation schedule showed about 14 % of cost saving compared with the chiller-priority control.

Charging Schedule Establishment of PEVs considering Power System Constraints (전력계통 제약을 고려한 플러그인 전기자동차 충전계획 수립)

  • Gwon, Han Na;Kook, Kyung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.632-639
    • /
    • 2018
  • Recently, a policy has been enforced to supply Plug-in Electric Vehicles (PEVs) but this may require reinforcement of the power system depending on its clustering because PEVs are charged directly from power systems. On the other hand, as the reinforcement of power system is limited by time and budget, it is important to supply the charging demand of PEVs efficiently using the existing power systems to increase the diffusion of PEVs. This paper establishes a charging schedule for Plug-in Electric Vehicles (PEVs) considering the power system constraints. For this, the required amount and time of the charging demand for an individual PEV was modeled to integrate into power systems based on the driving pattern and charging tariff of PEV. Furthermore, the charging schedule of PEVs was established to meet the power system constraints by calculating the operating conditions of the power systems with PEVs.