• Title/Summary/Keyword: Operating margin

Search Result 298, Processing Time 0.024 seconds

On-line Generation of Three-Dimensional Core Power Distribution Using Incore Detector Signals to Monitor Safety Limits

  • Jang, Jin-Wook;Lee, Ki-Bog;Na, Man-Gyun;Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.528-539
    • /
    • 2004
  • It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the linear power density (LPD) and the departure from nucleate boiling ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 Cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation.

Characteristics of Combustion and Emission for Synthetic Natural Gas in CNG Engine (CNG엔진에서 합성가스 연료의 연소 및 배기 특성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.8-14
    • /
    • 2015
  • Synthetic natural gas(SNG), acquired from coal, is regarded as an alternative to natural gas since a rise in natural gas due to high oil price can be coped with it. In the present study, 11-liter heavy duty compressed natural gas(CNG) engine was employed in order to examine the combustion and emission characteristics of SNG. The simulated SNG, made up 90.95% of methane, 6.05% propane and 3% hydrogen was used in the experiment. Power output, thermal efficiency, combustion stability and emission characteristics were compared to those with CNG at the same engine operating conditions. Knocking phenomenon was also analyzed at 1260 rpm, full load condition. Combustion with SNG was more stable than CNG. Nitrogen oxides emissions increased while Carbon dioxides emissions decreased. Anti-knocking characteristics were improved with SNG.

Capacity Estimation Models for Work-zones Under Traffic Signal Influence and the Empirical Validation (신호영향권 하 도로공사구간에서의 용량산정모형 개발과 실증)

  • Shin, Chi-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This paper focuses on the development of analytical models for estimating the changes in saturation flow rates (SFR) at the stop-lines of a signalized intersection due to the existence of nearby work-zones, and thereby calculating the prevailing capacity values for specific lane groups. Major changes were incorporated in the logics of previous models and significant revisions have been made to secure the accuracy and simplicity. Furthermore, much attention was paid to model validation by making comparisons to both extensive simulation results and empirical data from various sites. It was found that SFRs are highly sensitive to the location of work-zones, the distance to each work-zone from the stop-line of a concerned approach, the number of lanes open and closed, and the effective green time. Using such geometric and operating conditions that constitute work-zone environment, the proposed models successfully estimated SFR values with a miniscule margin of error.

The Economic Analysis of A Solid Refuse Fuel (SRF) Project in the Urban Area (가연성 폐기물 고형연료(SRF) 사업의 경제성 분석)

  • Jang, EunMi;Cho, Yongsung
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.245-254
    • /
    • 2013
  • Korea government promote renewable energy as the core of their energy matrix to break the dependence and reduce greenhouse effects. This study analyzes the economic assessment of Solid Refuse Fuel project in urban area, considering the marginal external costs of air pollution in this area. Assessment index defined as costs (i.e., construction cost, operation cost) and benefit (margin, external cost) data which is located in Sudokwon landfill site. The result indicates that cost-benefit analysis of SRF is calculated as 1.0. In addition, SRF project is very sensitive about electric power selling price, operating cost and labor cost according to inflation rates. This study shows that the sustainability of SRF project is required the government financial support like investment funds as well as policy support. Variability analysis of SRF economic assessment due to renewable energy can be used for making policies in various fields such as waste and public energy field.

POWER UPRATES IN NUCLEAR POWER PLANTS: INTERNATIONAL EXPERIENCES AND APPROACHES FOR IMPLEMENTATION

  • Kang, Ki-Sig
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.255-268
    • /
    • 2008
  • The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants.

Program development and preliminary CHF characteristics analysis for natural circulation loop under moving condition

  • Gui, Minyang;Tian, Wenxi;Wu, Di;Chen, Ronghua;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.446-454
    • /
    • 2021
  • Critical heat flux (CHF) has traditionally been evaluated using look-up tables or empirical correlations for nuclear power plants. However, under complex moving condition, it is necessary to reconsider the CHF characteristics since the conventional CHF prediction methods would no longer be applicable. In this paper, the additional forces caused by motions have been added to the annular film dryout (AFD) mechanistic model to investigate the effect of moving condition on CHF. Moreover, a theoretical model of the natural circulation loop with additional forces is established to reflect the natural circulation characteristics of the loop system. By coupling the system loop with the AFD mechanistic model, a CHF prediction program called NACOM for natural circulation loop under moving condition is developed. The effects of three operating conditions, namely stationary, inclination and rolling, on the CHF of the loop are then analyzed. It can be clearly seen that the moving condition has an adverse effect on the CHF in the natural circulation system. For the calculation parameters in this paper, the CHF can be reduced by 25% compared with the static value, which indicates that it is important to consider the effects of moving condition to retain adequate safety margin in subsequent thermal-hydraulic designs.

The Effect of Aggressive Order Intake on Defect of Construction Companies - Empirical Analysis Using Financial Approach - (공격적인 수주행위가 건설기업의 하자발생에 미치는 영향 - 재무적 접근을 이용한 실증분석 -)

  • Park, Hong-Jo;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.149-156
    • /
    • 2021
  • This study empirically verified whether aggressive order intake affect occurrence of defects of Korean construction companies. In order to compensate for the shortage of construction costs due to aggressive low-cost orders of contractors, self-response measures such as design changes are followed, and construction defects may be induced in this process. It aims to verify relevance between aggressive order intake and defect in construction empirically using financial accounting data. As a result, it was confirmed that an abnormal increase in order volume and a deterioration in profitability such as operating margin due to aggressive order taking behavior leads to a decrease in construction quality and occurrence of defects. In addition, it was also confirmed that low construction ability and intentional changes in construction design or contract conditions after construction commences were a direct causes of defects. The results of this study can serve as an opportunity to come up with measures to prevent defects by confirming the relationship between defects in construction and deterioration of profitability due to aggressive low-cost order takings.

A study on the dynamic characteristics of the secondary loop in nuclear power plant

  • Zhang, J.;Yin, S.S.;Chen, L.;Ma, Y.C.;Wang, M.J.;Fu, H.;Wu, Y.W.;Tian, W.X.;Qiu, S.Z.;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1436-1445
    • /
    • 2021
  • To obtain the dynamic characteristics of reactor secondary circuit under transient conditions, the system analysis program was developed in this study, where dynamic models of secondary circuit were established. The heat transfer process and the mechanical energy transfer process are modularized. Models of main equipment were built, including main turbine, condenser, steam pipe and feedwater system. The established models were verified by design value. The simulation of the secondary circuit system was conducted based on the verified models. The system response and characteristics were investigated based on the parameter transients under emergency shutdown and overload. Various operating conditions like turbine emergency shutdown and overspeed, condenser high water level, ejector failures were studied. The secondary circuit system ensures sufficient design margin to withstand the pressure and flow fluctuations. The adjustment of exhaust valve group could maintain the system pressure within a safe range, at the expense of steam quality. The condenser could rapidly take out most heat to avoid overpressure.

Development of Turbo Expanders with Hydrostatic Bearings for Hydrogen Liquefaction Plants (정압 베어링을 적용한 수소 액화 공정용 터보 팽창기 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • This paper presents a hydrostatic bearing design and rotordynamic analysis of a turbo expander for a hydrogen liquefaction plant. Th~e turbo expander includes the turbine and compressor wheel assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 75,000 rpm and the rated power is 6 kW. For the bearing operation, we use pressurized air at 8.5 bar as the lubricant that is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various gauge pressure ratios and select the orifice diameter providing the maximum bearing stiffness. Additionally, we conduct a rotordynamic analysis based on the calculated bearing stiffness and damping considering design parameters of the turbo expander. The predicted Cambell diagram indicates that there are two critical speeds under the rated speed and there exists a sufficient separation margin for the rated speed. In addition, the predicted rotor vibration is under 1 ㎛ at the rated speed. We conduct the operating test of the turbo expander in the test rig. For the operation, we supply pressurized air to the turbine and monitor the shaft vibration during the test. The test results show that there are two critical speeds under the rated speed, and the shaft vibration is controlled under 2.5 ㎛.

Technical Evaluation of Engineering Model of Ultra-Small Transmitter Mounted on Sweetpotato Hornworm

  • Nakajima, Isao;Muraki, Yoshiya;Mitsuhashi, Kokuryo;Juzoji, Hiroshi;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • The authors are making a prototype flexible board of a radio-frequency transmitter for measuring an electromyogram (EMG) of a flying moth and plan to apply for an experimental station license from the Ministry of Internal Affairs and Communications of Japan in the summer of 2022. The goal is to create a continuous low-dose exposure standard that incorporates scientific and physiological functional assessments to replace the current standard based on lethal dose 50. This paper describes the technical evaluation of the hardware. The signal of a bipolar EMG electrode is amplified by an operational amplifier. This potential is added to a voltage-controlled crystal oscillator (27 MHz, bandwidth: 4 kHz), frequency-converted, and transmitted from an antenna about 10 cm long (diameter: 0.03 mm). The power source is a 1.55-V wristwatch battery that has a total weight of about 0.3 g (one dry battery and analog circuit) and an expected operating time of 20 minutes. The output power is -7 dBm and the effective isotropic radiated power is -40 dBm. The signal is received by a dual-whip antenna (2.15 dBi) at a distance of about 100 m from the moth. The link margin of the communication circuit is above 30 dB within 100 m. The concepts of this hardware and the measurement data are presented in this paper. This will be the first biological data transmission from a moth with an official license. In future, this telemetry system will improve the detection of physiological abnormalities of moths.