• Title/Summary/Keyword: Operating limit

Search Result 520, Processing Time 0.027 seconds

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

Design and Implementation of EMS for Real-Time Power Generation Control of Wind Farm Based on Wake Effect Optimization (후류 영향 최적화 기반 실시간 풍력발전단지 발전 제어용 EMS의 설계 및 구현)

  • Kim, Joon-Hyoung;Sung, Ki-Won;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1097-1108
    • /
    • 2022
  • This paper aimed to design and implement an EMS for real-time power generation control based on wake effect optimization of wind farm, and then to test it in commercial operating wind farm. For real-time control, we proposed the wake band-based optimization and setting the wake effect distance limit, and when the wake effect distance limit was set to 7D in the actual wind farm layout, the calculation time was improved by about 93.94%. In addition, we designed and implemented the script-based EMS for flexible operation logic management in preparation for unexpected issues during testing, and it was installed and tested on a wind farm in commercial operation. However, three issues arose during the testing process. These are the communication interface problem of meteorological tower, the problem of an abnormal wake effect, and the problem of wind turbine yaw control. These issues were solved by modifying the operation logic using EMS's script editor, and the test was successfully completed in the wind farm in commercial operation.

Numerical Analysis of Nonlinear Longitudinal Combustion Instability in LRE Using Pressure-Sensitive Time-Lag Hypothesis (시간지연 모델을 이용한 액체로켓엔진의 축방향 비선형 연소불안정 해석)

  • Kim Seong-Ku;Choi Hwan Seok;Park Tae Seon;Kim Yong-Mo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.281-287
    • /
    • 2005
  • Nonlinear behaviors such as steep-fronted wave motions and a finite amplitude limit cycle often accompanying combustion instabilities have been numerically investigated using a characteristic-based approximate Riemann solver and the well-known ${\eta}-{\tau}$ model. A resonant pipe initially subjected to a harmonic pressure disturbance described the natural steepening process that leads to a shocked N-wave. For a linearly unstable regime, pressure oscillations reach a limit cycle which is independent of the characteristics of the initial disturbances and depends only on combustion parameters and operating conditions. For the 1.5 MW gas generator under development in KARI, the numerical results show good agreement with experimental data from hot-firing tests.

  • PDF

Analysis of Link Error Effects in MANET Address Autoconfiguration Protocols

  • Kim, Sang-Chul;Chung, Jong-Moon
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.84-93
    • /
    • 2009
  • This paper focuses on message complexity performance analysis of mobile ad hoc network (MANET) address autoconfiguration protocols (AAPs) in reference to link errors generated by mobile wireless nodes. An enhancement was made using a proposed retransmission limit, S, to be computed for error recovery (based on the link error probability), to measure message complexity of AAPs in reference to the link error probability, $P_e$. The control procedures for the retransmission limit have been included for each of the AAPs. Retransmission limit control is critical for efficient energy consumption of MANET nodes operating on limited portable energy. O-notation has been applied to analyze the upper bound of the number of messages generated by a MANET group of nodes. The AAPs investigated in this paper are strong duplicate address detection (DAD), weak DAD with proactive routing protocol (WDP), weak DAD with on-demand routing protocol (WDO), and MANETConf. Each AAP reacts different to link errors, as each AAP has different operational procedures. The required number of broadcasting, unicasting, relaying, and received messages of the nodes participating in a single-node joining procedure is investigated to asymptotically calculate the message complexity of each AAP. Computer simulation was conducted and the results have been analyzed to verify the theoretical message complexity bounds derived. The message complexity of WDP was lowest, closely followed byWDO, based on the simulation results and analysis of the message complexity under nominal situations. The message complexity of MANETConf was higher than WDO, and strong DAD resulted to be most complex among the four AAPs.

The review of safety against derailment on twisted track for Korean tilting train design (한국형 틸팅차량 설계의 비틀린 궤도상의 탈선안전도 검토)

  • Kim Nam-Po;Kim Jung-Seok;Park Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.299-307
    • /
    • 2005
  • The 180 km/h Korean Tilting Train(TTX) which is now developing as a part of the Korean National R&D project, was elaborately designed. As the tilting trains run curve track with the $30\%$ higher speed than normal trains, the higher centrifugal and dynamic force are expected. Furthermore the complex tilting system increase the probability of failure. Therefore it is very important for tilting train to ensure safety against derailment under the various kind of failed condition in the middle of running as well as normal operating condition. The TTX train have the relatively high roll stiffness to improve the lateral ride comfort and to limit the roll displacement on the curve. But the higher roll stiffness increase the risk of derailment on the twisted track. This paper describes the study to review the safety against derailment caused by the wheel unloading on the severely twisted track. The worst combination of maximum cant change with maximum twist defect was established by numerical simulation. And also it was assumed that the air bag deflated and still the train run its speed limit. Those kind of assumption might be the worst case from the view point of wheel unloading derailment on the twisted track. The dynamic simulation was done by means of VAMPIRE S/W and non-linear transient analysis. We found that derailment quotients Q/P was only slightly influenced by track twist but the wheel unloading was greatly influenced. And we ascertained that the higher roll stiffness the higher wheel unloading. In case of air bag deflated situation, the wheel unloading reached up to $100\%$ which means the wheel lift or jumped. Therefore it was concluded that the design need to be improved to ensure the safety against derailment on the maximum twisted track in case of air bag deflated and tilting train's speed limit.

  • PDF

A Study on the Large-scale Adoption Method of Distribution System Interconnected with PV System by Energy Storage System (전기저장장치를 이용한 태양광전원이 연계된 배전계통 수용성향상 방안에 관한 연구)

  • Nam, Yang-Hyun;Choi, Sung-Sik;Kang, Min-Kwan;Lee, Hu-Dong;Park, Ji-Hyun;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1031-1039
    • /
    • 2018
  • If large-scale PV systems are continuously interconnected to distribution system, customer voltages could violate the allowable voltage limit($220{\pm}13V$) according to reverse power flow of PV system. In order to solve these problems, this paper proposes flexible adoption evaluation algorithm of PV system in distribution system which estimates proper introduction capacity and location of ESS(energy storage system) for keeping customer voltages within allowable voltage limit based on various operating scenarios related with connecting point and capacity of PV system. And also this paper proposes modeling of ESS, SVR(step voltage regulator) and PV system using PSCAD/EMTDC S/W and analyzes characteristics of customer voltages and the adoption ability of PV system in distribution system. From the simulation results, it is confirmed that proposed algorithm is useful for large-scale adoption of PV system in distribution system to maintain customer voltages within allowable voltage limit.

Limit Analysis of the Distance between DU and RU in 4G FDD Mobile Communication Systems (FDD 방식의 4G 이동통신 기지국에서 DU와 RU간 한계거리 분석)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.135-139
    • /
    • 2012
  • A majority of 4G Mobile communication manufacturers have launched separated-type base stations composed of DU (digital unit) and RU (ratio unit). DUs are usually installed in the central office, while RUs with antennas are installed on the top of building or pole. Therefore, the allowable distance between DU and RU is very important for cell planning. In this paper, we analyze the allowable distance between DU and RU induced by closed-loop MIMO (mulitple input multiple output) technology in 4G FDD (frequency division duplexing) mobile communication systems. In conclusion, the distance limit between DU and RU is dependent on the frequency of the wireless communication, and the allowable distance is about 11 km when assuming the operating frequency is 2 GHz.

Surface Modification of Screen-Mesh Wicks to Improve Capillary Performance for Heat Pipes (히트파이프 모세관 성능 개선을 위한 스크린-메쉬 윅의 표면 개질)

  • Jeong, Jiyun;Lim, Hyewon;Kim, Hyewon;Lee, Sangmin;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.185-190
    • /
    • 2022
  • Among the operating limits of a heat pipe, the capillary limit is significantly affected by the characteristics of the wick, which is determined by the capillary performance. The major parameters for determining capillary performance are the maximum capillary pressure and the spreading characteristics that can be expected through the wick. A well-designed wick structure improves capillary performance and helps improve the stability of the heat pipe by enhancing the capillary limit. The capillary performance can be improved by forming a porous microstructure on the surface of the wick structure through surface modification techniques. In this study, a microstructure is formed on the surface of the wick by using a surface modification method (i.e., an electrochemical etching process). In the experiment, specimens are prepared using stainless-steel screen mesh wicks with various fabrication conditions. In addition, the spreading and capillary rise performances are observed with low-surface-tension fluid to quantify the capillary performance. In the experiments, the capillary performance, such as spreading characteristics, maximum capillary pressure, and capillary rise rate, improves in the specimens with microstructures formed through surface modification compared with the specimens without microstructures on the surface. The improved capillary performance can have a positive effect on the capillary limit of the heat pipe. It is believed that the surface microstructures can enhance the operational stability of heat pipes.

A Study of Radio Wave Propagation Criterion for the Cognitive Radio System using Interference Analysis in Broadcasting Band (방송대역에서 간섭분석을 이용한 무선인지 시스템의 전파 전달기준에 관한 연구)

  • Choi, Joo-Pyoung;Duy, Vo Quoc;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.1014-1022
    • /
    • 2009
  • In this paper, interference analysis is carried out to obtain the operating criterion and coexistence condition between digital television devices and cognitive radio-based mobile wimax devices in the UHF (Ultra High Frequency) broadcasting frequency bands. To this end, an efficient interfering calculation tool known as SEAMCAT (Spectrum Engineering Advanced Monte-Carlo Analysis Tool) is employed to acquire the coexistence criterions between heterogeneous radio links operating in the same portion of spectrum. As a result, these criterions will be used to achieve interference temperature limit level applied to interference temperature model for analyzing the capacity of cognitive radio receivers accurately.

A computer simulation of ion exchange membrane electrodialysis for concentration of seawater

  • Tanaka, Yoshinobu
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.13-37
    • /
    • 2010
  • The performance of an electrodialyzer for concentrating seawater is predicted by means of a computer simulation, which includes the following five steps; Step 1 mass transport; Step 2 current density distribution; Step 3 cell voltage; Step 4 NaCl concentration in a concentrated solution and energy consumption; Step 5 limiting current density. The program is developed on the basis of the following assumption; (1) Solution leakage and electric current leakage in an electrodialyzer are negligible. (2) Direct current electric resistance of a membrane includes the electric resistance of a boundary layer formed on the desalting surface of the membrane due to concentration polarization. (3) Frequency distribution of solution velocity ratio in desalting cells is equated by the normal distribution. (4) Current density i at x distant from the inlets of desalting cells is approximated by the quadratic equation. (5) Voltage difference between the electrodes at the entrance of desalting cells is equal to the value at the exits. (6) Limiting current density of an electrodialyzer is defined as average current density applied to an electrodialyzer when current density reaches the limit of an ion exchange membrane at the outlet of a desalting cell in which linear velocity and electrolyte concentration are the least. (7) Concentrated solutions are extracted from concentrating cells to the outside of the process. The validity of the computer simulation model is demonstrated by comparing the computed results with the performance of electrodialyzers operating in salt-manufacturing plants. The model makes it possible to discuss optimum specifications and operating conditions of a practical-scale electrodialyzer.