• Title/Summary/Keyword: Operating condition

Search Result 3,025, Processing Time 0.034 seconds

Qualification Test of a Main Coolant Pump for SMART Pilot (SMART 연구로 주냉각재펌프의 검증시험)

  • Park, Sang-Jin;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.858-865
    • /
    • 2006
  • SMART Pilot is a multipurpose small capacity integral type reactor. Main coolant pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of $310^{\circ}C$ and 14.7MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present wort a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and lift-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP.

The Canopy Transparency Coating Study of Cockpit Temperature Effect Verification (조종실 온도 영향성 검증을 위한 캐노피 투명체 코팅 연구)

  • Nam, Yongseog;Kim, Taehwan;Kim, Yunhi;Woo, Seongjo;Kim, Myungho
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2008
  • Under the non-operating exposure condition in the hot area, the T-50 cockpit temperature is expected over the requirement according to T-50 environmental criteria. So it is necessary to protect the cockpit from the high temperature condition during the non-operating exposure because the high temperature of the cockpit may result in the cockpit equipment malfunction. In this study, the transparency coating is selected as the method for protecting the cockpit from the high temperature exposure and analyzed the effect on the cockpit heat load attenuation. Some kinds of cockpit coating were reviewed and selected and the analysis was performed about the effect before and after coating application under 1% hot day condition based on the T-50 FSD hot soaking test data. The result of analysis show transparency coating is so effective to attenuate the heat load of T-50 cockpit.

  • PDF

UPFC model for power flow using IPLAN (IPLAN을 이용한 UPFC 조류계산 모형)

  • Kook, Kyung-Soo;Kim, Hak-Man;Jeon, Jin-Hong;Oh, Tae-Kyoo;Jang, Byung-Hoon;Chu, Jin-Bu
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.316-318
    • /
    • 1998
  • This paper presents an approach that provides an equivalent initial operating condition of UPFC in load-flow study for stability analysis. The UPFC model for load-flow implemented by IPLAN in PSS/E is represented by an equivalent load injection. In doing so, the transmission line to which UPFC is connected is disconnected and the function of UPFC is represented by the equivalent load variation. This operating condition may not be adequate as an initial condition for subsequent dynamic simulation. The proposed approach provides a way of equivalencing UPFC load injection without line disconnection. The method was applied to a realistic power system for validity.

  • PDF

Cavitation Characteristics of a Pump-turbine Model by CFD Analysis

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • The pumped storage plant operates with quick change of the discharge as well as quick changes between pump mode and turbine mode. This study focuses on the cavitation analysis of a pump-turbine model because in turbo-machinery, cavitation can reduce the performance and shorten service life. The pump-turbine model system consists of 7 blades, 20 stay vanes (including tongue) and 20 guide vanes. This study adopts the Rayleigh-Plesset model as a cavitation model, which illustrates cavitation by using the air volume fraction method. The pump mode and turbine mode at the operating condition of partial loading, normal and excessive loading are analyzed to investigate the cavitation performance of the pump-turbine. It was observed that this pump-turbine design showed very good cavitation characteristics with no cavitation bubbles in all operating conditions. Overall value of air volume fraction of both mode at different operating condition are lower than 1, which confirms low possibility of cavitation occurrence at current situation.

The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water(II) (전해수를 이용한 견섬유 정련 및 세리신 회수(II)-분리막에 의한 세리신 농축을 중심으로-)

  • 배기서;이태상;노덕길;홍영기
    • Textile Coloration and Finishing
    • /
    • v.16 no.4
    • /
    • pp.10-18
    • /
    • 2004
  • In this work, Aqueous sericin solution was prepared by degumming process with electrolytic reduction water. Then, the microfiltration and ultrafiltration systems were applied to the concentration of aqueous sericin solution. The objective of this study was to select the optimum operating condition among the different pressure. The permeate flux and rejection ratio were observed with time, pressure, flow rate and concentration. and, the wastewater and permeated water quality values such as pH, BOD, COD, and NH levels were measured. In order to see the influence of electrolytic reduction water, the flux of pure water and electrolytic reduction water by PVDF22(MF) and PS100(UF) membrane was measured. In microfiltration system, the relative flux reduction decreased rapidly to 0.02 in the 30min, as the concentration polarization and gel layer formation were increased. and then the sericin concentration rejection ratio was 40%. In ultrafiltration system, the permeate flux decreased with time and concentration, and increased with the operating pressure and flow rate. Optimal condition in PS100 membrane system for sericin concentration was operating pressure 1.464kgf/$cm^24, operating flow rate $7\ell/min at\; 40^{\circ}C$. At that time, sericin concentration rejection ratio was 83% respectably. The sericin solution was concentrated from 0.1wt% solution to 0.2 wt % solution during about 2 hrs by the UF filteration membrane system.

A Procedure for Robust Evolutionary Operations

  • Kim, Yongyun B.;Byun, Jai-Hyun;Lim, Sang-Gyu
    • International Journal of Quality Innovation
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 2000
  • Evolutionary operation (EVOP) is a continuous improvement system which explores a region of process operating conditions by deliberately creating some systematic changes to the process variable levels without jeopardizing the product. It is aimed at securing a satisfactory operating condition in full-scale manufacturing processes, which is generally different from that obtained in laboratory or pilot plant experiments. Information on how to improve the process is generated from a simple experimental design. Traditional EVOP procedures are established on the assumption that the variance of the response variable should be small and stable in the region of the process operation. However, it is often the case that process noises have an influence on the stability of the process. This process instability is due to many factors such as raw materials, ambient temperature, and equipment wear. Therefore, process variables should be optimized continuously not only to meet the target value but also to keep the variance of the response variables as low as possible. We propose a scheme to achieve robust process improvement. As a process performance measure, we adopted the mean square error (MSE) of the replicate response values on a specific operating condition, and used the Kruskal-Wallis test to identify significant differences between the process operating conditions.

  • PDF

Use of HCI Program for Optimization of Operating Conditions in Analytical and Preparative Chromatography (분석 및 분리용 크로마토그래피에서 조업조건의 최적화를 위한 HCI 프로그램의 이용)

  • Lee, Ju-Won;Lee, Min-U;No, Gyeong-Ho
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.408-413
    • /
    • 1999
  • To separate mixtures analytically and preparatively by LC (Liquid Chormatography), the operating conditions of analytical chromatography should be determined. The HCI program was utilized to find the optimum operating condition accurately and rapidly, and to reduce the number of experiments. In an analytical chromatography, based on the resolution and analysis time, the experimental conditons of deoxyribonucleosides and phopholipids were fixed in terms of taxol was calculated, and the collection time was predicted for the mixture of 5'-IMP and 5'-GMP from the elution profile when and purity wer known.

  • PDF

Experimental Study on Added Resistance of VLCC for Ship's Operating Condition in Waves

  • Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.240-245
    • /
    • 2015
  • In this study, experiments were performed using a model of a very large crude oil carrier (VLCC), which is a typical blunt ship, in a wave-making towing tank. The aim of the experiments was to determine the effect of added resistance in waves on the various operating conditions of a VLCC. An analysis of the results was conducted to determine the characteristics of resistance performance in waves. In addition, the characteristics of added resistance on a tanker were analyzed under irregular waves based upon the above result. The experimental results showed that added resistance was the highest around ${\lambda}/L=1.0$, and the added resistance increased with the increase of the ship speed. Furthermore, under even keel conditions, the added resistance was higher than that under the trim changes, and the smallest added resistance was measured at the trim by the stern. Based on the experimental results, this study proposes effective operating conditions by analyzing the characteristics of the mean added resistance and the expected extreme response in irregular waves.

Prediction of Design Ice Load on Icebreaking Vessels under Normal Operating Conditions (정상운항 상태에서 쇄빙선박에 작용하는 설계 빙하중 추정)

  • Choi, Kyung-Sik;Jeong, Seong-Yeob;Nam, Jong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.603-610
    • /
    • 2009
  • Ice load is one of the important design parameters for the construction of icebreaking vessels. In this paper, the design ice load prediction for the icebreaking vessels under normal operating condition in ice-covered sea is discussed. The ice loads under normal operating condition are expected from sea trials in moderate ice conditions. In this sense the extreme ice loads during heavy ramming or accidental collision are not considered. Current study describes the global ice load on the hull of the icebreaking vessels. Available ice load data from full-scale sea trials are collected and analyzed according to various ship-ice interaction parameters including displacement, stem angle, speed of a ship and flexural strength and thickness of sea ice. The ice load prediction formula is compared with the collected full-scale sea trials data and it shows a good agreement.

Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace (산업용 가스화 용융로를 위한 산소 버너의 개발)

  • Bae, Soo-Ho;Lee, Uen-Do;Shin, Hyun-Dong;Kim, Soung-Hyoun;Gu, Jae-Hoi;Yoo, Young-Don
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF