• Title/Summary/Keyword: Operating State

Search Result 1,755, Processing Time 0.025 seconds

STATE TOKEN PETRI NET MODELING METHOD FOR FORMAL VERIFICATION OF COMPUTERIZED PROCEDURE INCLUDING OPERATOR'S INTERRUPTIONS OF PROCEDURE EXECUTION FLOW

  • Kim, Yun Goo;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.929-938
    • /
    • 2012
  • The Computerized Procedure System (CPS) is one of the primary operating support systems in the digital Main Control Room. The CPS displays procedure on the computer screen in the form of a flow chart, and displays plant operating information along with procedure instructions. It also supports operator decision making by providing a system decision. A procedure flow should be correct and reliable, as an error would lead to operator misjudgment and inadequate control. In this paper we present a modeling for the CPS that enables formal verification based on Petri nets. The proposed State Token Petri Nets (STPN) also support modeling of a procedure flow that has various interruptions by the operator, according to the plant condition. STPN modeling is compared with Coloured Petri net when they are applied to Emergency Operating Computerized Procedure. A converting program for Computerized Procedure (CP) to STPN has been also developed. The formal verification and validation methods of CP with STPN increase the safety of a nuclear power plant and provide digital quality assurance means that are needed when the role and function of the CPS is increasing.

A Study on Operating Limit Analysis for Small High-speed Boat (소형 고속정의 운항한계에 대한 연구)

  • BAE, Jun-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.784-789
    • /
    • 2015
  • It was carried out a review of operating limit analysis for small high-speed boat by author. In general, a review of ship's seakeeping performance is performed in the step of ship design, but this study was carried out in the state of completion of boat. Motion performance of Pitch, Vertical and Lateral acceleration and Slamming were satisfied in some encounter angle but deck wetness was not satisfied in all it does the analysis. As a result, sea state rather than the speed and encounter angle of vessel have a greater effect on the seakeeping performance of target vessel. It seems to be due to the size of the target ship.

A Simple-Structured DC Solid-State Circuit Breaker with Easy Charging Capability (충전 동작이 용이한 간단한 구조의 DC 반도체 차단기)

  • Kim, Jin-Young;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1575-1583
    • /
    • 2017
  • With the development of DC distribution, DC circuit breaker is required to ensure the stability of the DC grid. Unlike a mechanical circuit breaker that blocks after several tens of milliseconds, a DC SSCB(Solid-State Circuit Breaker) can break the fault well within 1 [ms], so it can prevent the damage of accident. However, the previous DC SSCB requires a lot of switching elements for charging commutation capacitors, and the control is complicated. Therefore, this paper proposes a new DC SSCB suitable for DC grid. The proposed DC SSCB is simple to control for charging commutation capacitors, and it can perform the rapid breaking and operating duty of reclosing and rebreaking. The proposed DC SSCB was designed to 380 [V] and 5 [kW] class which is suitable for residential DC distribution, and the operating characteristics of the proposed DC SSCB were verified by simulations and experiments. It is anticipated that the proposed DC SSCB may be utilized to design and realize DC grid system.

A Novel Interleaving Control Scheme for Boost Converters Operating in Critical Conduction Mode

  • Yang, Xu;Ying, Yanping;Chen, Wenjie
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • Interleaving techniques are widely used to reduce input/output ripples and to increase the power capacity of boost converters operating in critical conduction mode. Two types of phase-shift control schemes are studied in this paper, the turn-on time shifting method and the turn-off time shifting method. It is found that although the turn-off time shifting method exhibits better performance, it suffers from sub-harmonic oscillations at high input voltages. To solve this problem, an intensive quantitative analysis of the sub-harmonic oscillation phenomenon is made in this paper. Based upon that, a novel modified turn off time shifting control scheme for interleaved boost converters operating in critical conduction mode is proposed. An important advantage of this scheme is that both the master phase and the slave phase can operate stably in critical conduction mode without any oscillations in the full input voltage range. This method is implemented with a FPGA based digital PWM control platform, and tests were carried out on a two-phase interleaved boost PFC converter prototype. Experimental results demonstrated the feasibility and performance of the proposed phase-shift control scheme.

Numerical Simulation and PIV Measurement on the Internal Flow in a Centrifugal Mini Pump at Low Flow Rate Conditions

  • Yuan, Hui-Jing;Shao, Jie;Cao, Guang-Jun;Liu, Shu-Hong;Wu, Yu-Lin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.775-780
    • /
    • 2008
  • This paper reports on the internal flow of a centrifugal mini pump working at the low flow rate operating conditions. The RNG $\kappa-\varepsilon$ turbulence model was employed to simulate the three-dimensional turbulent flow in the pump. To examine and certify the simulation results, a transparent acrylic centrifugal mini pump model which is suitable for PIV measurement has been developed. The tongue region and the passages region between blades were investigated using PIV. In order to eliminate the effect of refraction on the area closed to the wall and increase the measurement accuracy, the fluorescent particles were scatted into the working fluid with the tracing particles. It is found from the calculation and PIV measurement results that there is a large area of recirculation flow near the tongue at low flow rate operating conditions. The computationally predicted water head using the $\kappa-\varepsilon$ turbulence model at low flow rate operating conditions are in very good agreement with the experimentally measured water head and the mean velocity distributions at investigation area obtained by PIV and calculation showed a satisfactory agreement as well. Meanwhile, the results of PIV measurements show that the flow status in one passage is different to another. And for capturing the internal flow detail information, the $\kappa-\varepsilon$ turbulence model is not very suitable.

  • PDF

Array of SNOSFET Unit Cells for the Nonvolatile EEPROM (비휘방성 EEPROM을 위한 SNOSFET 단위 셀의 어레이)

  • 강창수;이형옥;이상배;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.48-51
    • /
    • 1991
  • Short channel Nonvolatile EEPROM memory devices were fabricated to CMOS 1M bit design rule, and reviews the characteristics and applications of SNOSFET. Application of SNOS field effect transistors have been proposed for both logic circuits and nonvolatile memory arrays, and operating characteristics with write and erase were investigated. As a results, memory window size of four terminal devices and two terminal devices was established low conductance stage and high conductance state, which was operated in “1” state and “0”state with write and erase respectively. And the operating characteristics of unit cell in matrix array were investigated with implementing the composition method of four and two terminal nonvolatile memory cells. It was shown that four terminal 2${\times}$2 matrix array was operated bipolar, and two termineal 2${\times}$2 matrix array was operated unipolar.

Circulating Mechanism of the Oil in Brief Operating for the Oil-impregnated Sintered Bearing

  • Harakawa, Toshiro;Maruyama, Tsuneo;Shimizu, Teruo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1006-1007
    • /
    • 2006
  • The oil-impregnated sintered bearings are used for various aplecations and, wide usages without refueling. The oil circulating mechanism operates smoothly the behavior of oil If doing at the time of passing and becoming a stationary state, and there is little thing where trouble is caused. On the other hand, the trouble of such as starting noise might be caused in the unstationary state that repeats operation for a short time. To study the behavior of oil of each parameter, we execute the numerical simulation and various verification experiments. As a result, we developed that the bearings were able to be used enough for various brief operating time in the unstationary state. Finally we have expanded the usage of the oil-impregnated sintered bearings by adding the consideration of the behavior of oil.

  • PDF

Reliability Evaluation of AGT Vehicle System Using Markov Chains (마코프 체인을 이용한 고무차륜 AGT 차량 시스템의 신뢰성 평가)

  • Ha Chen-Soo;Han Seok-Youn
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.539-544
    • /
    • 2004
  • In this paper, we present reliability modeling and analysis method of the Automated Guideway Transit(AGT) vehicle system using analytical models, based on Markov Chains. The Markov model can express state transition of the AGT vehicle sys. that is considered to be in one of four states, such as basic operating (0), minor delay(1), major delay(2) and non-operating(3) state. The proposed Markov model is illustrated with a numerical example and cases to find a steady state availability, MTBF(mean time between failures), and MTTR(mean time to repair) under specified failure and repair rate arc demonstrated.

  • PDF

Operating Frequency Design for Stable Initial Operation of Loosely Coupled Resonant DAB Converter (Loosely Coupled Resonant DAB 컨버터의 안정적인 초기 구동을 위한 동작 주파수 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin;Lee, Jaehong;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.437-445
    • /
    • 2021
  • This paper proposes an operating frequency design method that limits the voltage applied to aload-side converter during the initial operation of a loosely coupled resonant dual-active bridge (LCR-DAB) converter and an initial operating strategy that applies it. The LCR-DAB converter uses two wireless power transfer coils instead of the high-frequency transformer of the general DAB converter. The wireless power coil has a physical distance of several tens of millimeter or more between the two coils; thus, the LCR-DAB converter is a bidirectional isolated power conversion system that can easily achieve high insulation performance. However, for the initial operation of the LCR-DAB, if the power-side converter is operated at the resonance frequency while the load-side converter is not operating, then a very high voltage due to resonance is applied to the load-side converter, thereby causing damage to the converter. Therefore, a method that can stably charge the DC link voltage of the secondary-side converter during the initial operation is needed. This paper proposes a method to initially charge the secondary-side DC link by operating the primary-side converter at a frequency with limited voltage gain rather than at a steady-state operating frequency. The validity of the proposed frequency design method and initial operating sequence is verified through simulation and experimentation of the 1 KW LCR-DAB converter.

A New Reclosing and Re-breaking DC Thyristor Circuit Breaker for DC Distribution Applications

  • Kim, Jin-Young;Choi, Seung-Soo;Kim, In-Dong
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.272-281
    • /
    • 2017
  • The DC circuit breaker is essential for supplying stable DC power with the advent of DC transmission/distribution and sensitive loads. Compared with mechanical circuit breakers, which must interrupt a very large fault current due to their slow breaking capability, a solid-state circuit breaker (SSCB) can quickly break a fault current almost within 1 [ms]. Thus, it can reduce the damage of an accident a lot more than mechanical circuit breakers. However, previous DC SSCBs cannot perform the operating duty, and are not economical because many SCR are required. Therefore, this paper proposes a new DC SSCB suitable for DC grids. It has a low semiconductor conduction loss, quick reclosing and rebreaking capabilities. As a result, it can perform the operating duties of reclosing and rebreaking. The proposed DC SSCB is designed and implemented so that it is suitable for home dc distribution at a rated power of 5 [kW] and a voltage of 380 [V]. The operating characteristics are confirmed by simulation and experimental results. In addition, this paper suggests design guidelines so that it can be applied to other DC grids. It is anticipated that the proposed DC SSCB may be utilized to design and realize many DC grid systems.