• Title/Summary/Keyword: Operating Pressure

Search Result 2,520, Processing Time 0.033 seconds

An Inflence of Inlet Pressure in the Design of Sector-Shaped Pad Thrust Bearings (부채꼴형 추력베어링의 설계에 있어서 선단압력의 영향)

  • 김종수;김경웅
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.33-42
    • /
    • 1994
  • An influence of inlet pressure on the performance of sector-shaped pad thrust bearings is investigated theoretically. The optimum conditions of film thickness or the optimum positions of pivot are found through the evaluation of load capacity for all available conditions of film thickness, under the operating conditions which the thermal and pad deformation effects can be neglected. The bearing performance including the inlet pressure effects is obtained for a wide operating ranges that inertia parameter(Re$^{*}$) is up to unity, and for the various cases of pad extent angle (number of pad) and the three cases of the angle between pads. The results show that the inlet pressure has a large influence on the performance of sector-shaped pad thrust bearings. In the design of sector-shaped pad bearings, due to the inlet pressure, the optimum number of pad is varied with the operating speed and the angle between pads, and the optimum position of pivot is located toward the leading edge along with the operating speed increases.

Numerical prediction of pressure pulsation amplitude for different operating regimes of Francis turbine draft tubes

  • Lipej, Andrej;Jost, Dragica;Meznar, Peter;Djelic, Vesko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.375-382
    • /
    • 2009
  • Hydraulic instability associated with pressure fluctuations is a serious problem in hydraulic machinery. Pressure fluctuations are usually a result of a strong vortex created in the centre of a flow at the outlet of a runner. At every radial turbine and also at every single regulating axial turbine, the draft tube vortex appears at part-load operating regimes. The consequences of the vortex developed in the draft tube are very unpleasant pressure pulsation, axial and radial forces and torque fluctuation as well as turbine structure vibration. The consequences of the vortex are transferred upstream and downstream with amplitude and frequency modulation in respect of the turbine operating regime, cavitation conditions and air admitted content. Numerical prediction of the vortex appearance in the design stage is a very important task. The amplitude of the pressure pulsation is different for each operating regime therefore the main goal of this research was to numerically predict pressure pulsation amplitude versus different guide vane openings and to compare the results with experimental ones. For the numerical flow analysis of a complete Francis turbine (FT), the computer code ANSYS-CFX11 has been used.

Effect of Operating Conditions on the Fouling of UF Membrane in Treatment of Dissolved Organic Matter (UF를 이용한 용존성 유기물질 제거시 운전조건이 파울링에 미치는 영향)

  • Kwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1183-1191
    • /
    • 2000
  • Operating conditions for reduction of membrane fouling in treatment of dissolved organic matter by UF membrane process were investigated by pilot-scale plant using various operating conditions. As inlet pressure increased, increament of transmembrane pressure and flux decline were faster. The reason was due to the increase in adsorption of dissolved organic matter and the development of cake layer compression on the membrane surface. When efficient pressure (the difference of pressure between backwash and transmembrane pressures) was high, small amount of pollutant was retained on the membrane surface. When backwash was frequently conducted, low concentration of pollutant was maintained in recycling water. Therefore, backwash could be efficiently conducted with high efficient pressure and high frequency. Fouling rate was correlated with backwash and inlet pressures, recovery rate and cumulative permeated volume. Among the operating parameters backwash pressure was most closely related to fouling rate and inlet pressure was next to backwash pressure. It seems that the fouling was strongly related to pressure which leads to the cake layer compression and adsorption of dissolved organic matter.

  • PDF

Performance Analysis on the Variable Speed Scroll Compressor with Operating Conditions (가변속 스크롤 압축기의 운전조건의 변화에 따른 성능 해석)

  • 박홍희;박윤철;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.649-658
    • /
    • 2000
  • Thermodynamic modeling of low-pressure scroll compressor was developed by combining continuity and energy conservation equation. Suction gas heating was considered using energy balance inside the low pressure shell. Pressure, temperature and mass of refrigerant-22 as a function of orbiting angle were calculated by solving the governing equations using fourth order Rung-Kutta scheme. Motor efficiency was taken by experiments with a variation of frequency. The developed model was applied to the analysis of an inverter driven scroll compressor with a variation of frequency, pressure ratio and operating conditions. The model was verified with the experimental results at the same operating conditions. The developed model was adequate to predict performance of the inverter driven scroll compressor as a function of operating conditions. Calculated parameters from the model were discharge temperature, mass flow rate, power input, COP, and thermodynamic properties with respect to orbiting angle. To enhance the performance of a scroll compressor, it is essential to diminish leakage at low frequency level and improve the mechanical efficiency at high frequency level.

  • PDF

A Study on Effects of Operating Temperatures of Cyclone on Pressure Drop (사이클론의 작동온도가 압력손실에 미치는 영향에 관한 연구)

  • Kwak, Ji-Young;Song, Myung-Jun;Lee, Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.515-519
    • /
    • 2012
  • A numerical study was performed to observe the relation between internal flow characteristics and operating temperatures in a Lapple cyclone. The present numerical results agree reasonably well with previous experimental and numerical results. As the operating temperature increases, the pressure drop decreases due to decrease of wall shear stress and tangential velocities. A detailed comparison of pressure drops in the cyclone between theoretical prediction models and the present numerical simulations is also presented for wide range of operating temperatures.

  • PDF

Sensitivity Improvement and Operating Characteristics Analysis of the Pressure Sensitive Field Effect Transistor(PSFET) Using Highly-Oriented ZnO Piezoelectric Thin Film

  • Lee, Jeong-Chul;Cho, Byung-Woog;Kim, Chang-Soo;Nam, Ki-Hong;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.180-187
    • /
    • 1997
  • We demonstrate the improvement of sensitivity and analysis of operating characteristics of the piezoelectric pressure sensor using ZnO piezoelectric thin film and FET(field effect transistor) for sensing applied pressure and transforming the pressure into electrical signals, respectively. The sensitivity of the PSFET(pressure sensitive field effect transistor) was improved by using highly-oriented ZnO film perpendicular to the substrate surface and the operating characteristics was investigated by monitoring output voltage with time in various static pressure levels.

  • PDF

An Experimental Study of Sonic/Supersonic Ejector Flows (음속/초음속 이젝터 유동에 관한 실험적 연구)

  • Kim, Hui-Dong;Choe, Bo-Gyu;Gwon, O-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.640-647
    • /
    • 2002
  • An experimental investigation or the sonic and supersonic air ejector systems has beer conducted to develop design and prediction programs for practical ejector system. Five different primary nozzles have been employed to operate the ejector systems in the ranges of low and moderate operating pressure ratios. The ejector operating pressure ratio for the secondary chamber pressure to be minimized has a strong influence of the ejector throat ratio. The pressure inside the ejector diffuser is not dependent on the primary nozzle configurations employed but only a function of the ejector operating pressure ratio. Experimental results show that a supersonic ejector system is more desirable for obtaining high vacuum pressure of the secondary chamber than a sonic ejector system.

Features and Cost Reduction Effect of High Pressure LNG Pipeline Network (고압 LNG 배관망의 특성 및 비용절감 효과)

  • Kim, Ho-Yeon;Hong, Young-Soo;Noh, Joo-Young;Eom, Yun-Seong;Kim, Cheol-Man
    • Journal of Energy Engineering
    • /
    • v.17 no.3
    • /
    • pp.139-144
    • /
    • 2008
  • Recently due to march as the high oil price, It is necessary for Korea to grope a plan, which is to increase the energy efficiency of existing facilities as well as to develop overseas gas and oil resources. With this point, this work carried out to approach the high pressure LNG pipeline network of Inchon receiving terminal with Newton method as corrective flowrate. We found that the high pressure network mainly depends on FCVs(Flow Control Valves). The high pressure pump showed the maximum efficiency at the FCVs of 50% opening and could discharge LNG only above the LNG head of 1,500m from a system curve obtained. The operating cost of pumps was estimated from their operating points. We compared the operating cost under normal operation with the operating cost under maximum efficiency. Especially, we obtained the day savings of a year as wells as the hour savings of a day. From the results, the high pressure network win be able to reduce the operating cost of 138 million wons in a year. This means that a pump can reduce the operating cost of 9,823 thousands won. Consequently, this work could find the operating features of the pumps under the complicated high pressure LNG network and the savings effect of the pump operating cost. Also, the results will be able to macroscopically contribute the heightening of national energy competitiveness as well as to microscopically contribute the future effective operation of LNG receiving terminal.

Rigorous dynamic simulation and determination of initial operating conditions for two-bed PSA processes (두 탑 PSA공정의 상세 동적모사 및 초기운전조건 결정)

  • Hwang, Deok-Jae;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1520-1523
    • /
    • 1997
  • A rigorous dynamic simulation was performed in binary gas mixture H$_{2}$/CO (70:30 vol.%) to determinate start-up operating conditions of PSA(Pressure Swing Adsorption) processes. The rigorous dynamic model for the PSA process contains an Ergun equation for expressing the pressure drop in a bed, and valve equations to compute the boundary pressure change of the bed. As the result of the continuous dynamic simulation of 100 operating cyles in various initial conditions, the unsteady-state appeared in the early period and the cyclic steady-state came out about 20th cycle in feed condition and vaccum condition, and 30th cycle in pure H$_{2}$ condition. As time goes by valve equations made change the pressure at each end of the bed in ressurization, countercurrunt-depressurization and pressure equalization steps. The H$_{2}$ purity and the recovery is 99.99% and 86.73% respectively, which is slightly higher than the experimental data. Main contributiion of this study includes supplying fundamental technologies of handling combined variables PSA processes by developing rigorous models.

  • PDF

Characteristics of Permeation and Fouling of UF/MF Hollow Fiber Membranes for Drinking Water Treatment (정수처리 적용을 위한 UF/MF 중공사막의 투과성능과 오염현상)

  • 이주형;김정학;이용택
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2000
  • This study, which was tarried out to investigate the characteristics of permeation rates and fouling phenomena in drinking-water treating processes with MF membrane, showed that pressure drop was dependent on the length of membrane module and operating pressure; the pressure drop increased with the length of membrane module and operating pressure, operation at a relatively low pressure(0.5kg/$cm^2$) is better than that at a relatively (2.0kg/$cm^2$), since high operating pressure accelerates the clogging. In case of out-in permeation type, almost same flux was obtained after a certain operating time regardless of membrane length and operating pressure. In order to understand, the microbial fouling, chemical cleaning was carried out to the forced contaminated hollow-fiber membrane with chemicals($H_2O_2$, NaOCl, and NaOH). Chemical cleanings with $H_2O_2$and NaOCl, which are oxidizing agents, are better for sterilizing and desorbing the microbes than those with NaOH.

  • PDF