• Title/Summary/Keyword: Operating Position

Search Result 736, Processing Time 0.028 seconds

Magnetic Position Sensing System for Autonomous Vehicle and Robot Guidance (자율주행차량과 로봇의 안내를 위한 자계위치인식시스템)

  • Jung, Young-Yoon;Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.214-219
    • /
    • 2007
  • In this paper, a new magnetic position sensing mettled for autonomous vehicle and robot guidance is presented. In autonomous vehicle and robot control, position sensing is an important task for the identification of their locations, such as the current position within a trajectory. The magnet based autonomous vehicle and robot was identified position via magnetic materials. In the magnetic sensing system, the Earth field is one of the largest disturbance. To removal of the Earth field, this paper proposes 1-dimensional magnetic field sensors array and develops precise petition sensing system using linear operating region of the magnetic field sensor. This proposal is verified a feasible magnetic position sensing system for autonomous vehicle and robot guidance by the experimental results.

Position Estimation of a Missile Using Three High-Resolution Range Profiles (3개의 고 분해능 거리 프로파일을 이용한 유도탄의 위치 추정)

  • Yang, Jae-Won;Ryu, Chung-Ho;Lee, Dong-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.532-539
    • /
    • 2018
  • A position estimation technique is presented for a missile using high-resolution range profiles obtained by three wideband radars. Radar measures a target range using a reflected signal from the surface of a missile. However, it is difficult to obtain the range between the radar and the origin of the missile. For this reason, the interior angle between the moving missile and tracking radar is calculated, and a compensated range between surface of the missile and its origin is added to the tracking range of the radar. Therefore, position estimation of a missile can be achieved by using three total ranges from each radar to the origin of the missile. To verify the position estimation of the missile, electromagnetic numerical analysis software was used to prove the compensated range according to the flight position. Moreover, a wideband radar operating at 500-MHz bandwidth was applied, and its range profile was used for the position estimation of a missile.

Optimum Design of Latch Position and Latch Length on Operating Mechanism of a Circuit Breaker using ADAMS and VisualDOC (회로차단기 조작기구의 래치 위치 및 길이 최적설계)

  • Cha, Hyun Kyung;Jang, Jin Seok;Yoo, Wan Suk;Sohn, Jeong Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1215-1220
    • /
    • 2014
  • Breaking time is an important performance indicator of a circuit breaker. Thus, the operating mechanism of the circuit breaker should be optimized for reducing the breaking time. The operating mechanism in a gas circuit breaker is made up of several latches. Specifically, the geometry and relative positions of latches influence the dynamic behaviors of the operating mechanism. In this study, a three-stage latch operating mechanism is analyzed on the basis of the verified multibody dynamics model constructed using the MSC.ADAMS program. The relative positions and lengths of latches are selected as design variables. The dominant design variables are selected by a design study. Optimization is performed using a genetic algorithm (GA). The study results demonstrate that the performance of the circuit breaker improves by about 22.5.

Animal Tracking System Using the Doppler Effect for Single LEO Satellite (도플러 효과를 이용한 단일 저궤도위성의 동물추적시스템 개발)

  • Lee, Jeong-Nam;Jang, Yeong-Geun;Lee, Byeong-Hun;Mun, Byeong-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.61-69
    • /
    • 2006
  • Position determination accuracy is strongly depending on how much precisely and frequently satellite receiver measures transmitted signals from terminals on target animals when Doppler effect is applied for position determination. ARGOS satellite system has shown relatively high position determination accuracy by operating multiple satellites, which enable operator to get more Doppler shift data from terminals. In case of animal tracking mission with single satellite, however, it is difficult for the satellite receiver to receive transmitted signals from terminals frequently during short period that satellite passes over ground terminals. This is one of the main sources to decrease position accuracy on target animals. In this paper, the Doppler rate estimation is implemented to increase the number of Doppler shift data received by single satellite. It is proved that the relatively high position determination accuracy with increased number of estimated data can be obtained. We also suggest that the Doppler rate estimation is applicable for position determination system with single satellite.

An effect of time gating threshold (TGT) on a delivered dose in internal organ with movement due to respiration (호흡에 의해 내부 움직임을 갖는 장기에 전달되는 선량에서 Time Gating Threshold(TGT)의 효과)

  • Kim, Yon-Lae;Chung, Jin-Bum;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.132-135
    • /
    • 2004
  • In this study, we investigated the effect of threshold on a delivered dose in organ with internal motion by respiration. With mathematic model for 3D dose calculation reported by Lujan et al., we had calculated the position of organ as a function of time in previous study. This result presented that the variation of organ is within 2 mm from initial exhale position to the organ position during operating 1 s. Gating threshold, in this study, is determined to the moving region of target during 1s at a primary position of exhale. This period of gating threshold is 50% of the duty cycle in a half breathing cycle which is period from the top position of exhalation to the bottom position of inhalation. Radiation fields were then delivered under three conditions; 1) existent of moving target in the region of threshold(1sec, 1.5sec), 2) existent of moving target out of the region of threshold, 3) non-moving target. The non-moving target delivery represents a dose different induced due to internal organ motion.

  • PDF

A Sensorless Speed Control of 2-Phase Asymmetric SRM with Parameter Compensator (파라미터 보상기를 가지는 비대칭 SRM의 센서리스 속도제어)

  • Lim, Geun-Min;Ahn, Jin-Woo;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • This paper presents a sensorless speed control of a 2-phase switch reluctance motor(SRM). The proposed sensorless control scheme is based on the slide mode observer with parameter compensator to improve the estimation performance. In the stand still position, the initial rotor position is determined by pulse current responses of each phase windings and the current difference. In order to determine an accurate initial rotor position, the two initial rotor positions are estimated by the difference of the pulse currents. From the stand still to the operating region, a simple open loop control which determines the commutation sequence by the pulse current of the unexcited phase winding is used. When the motor speed is reached to the sensorless control region, the estimated rotor position and speed by the slide mode observer are used to control the SRM. The flux calculator used in the slide mode observer is designed by phase voltage and the voltage drops in the phase resistance of the winding. The accuracy of the flux calculator is dependent on the phase resistance. For the continuous update of the phase resistance, current gradient at the inductance break point is used in this paper. The error of the estimated rotor position at the current gradient position is used to update the phase resistance to improve the sensorless scheme. The proposed sensorless speed control scheme is verified with a practical compressor used in home appliances. And the results show the effectiveness of the proposed control scheme.

Analysis on Activation Characteristic of Heat Detectors in a Compartment Fire (실내화재에서의 열감지기 동작특성 분석)

  • Ryu, Hocheol
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.598-608
    • /
    • 2014
  • The first operation of alarm system starts at a detector. And the largest effect is produced on the operation of detector by the fire source position and installation position. Nevertheless, the Korean standard for the installation of detector only specifies matters of fire detector installation according to area and height, without consideration of installation position and fire source position. Therefore, this study carried out a fire test in consideration of detector installation position and fire source position (5 places) in order to minimize casualties owing to the fast operation of fire detector when a fire occurred. Considering that it took the longest time for a detector close to a wall to work in the results of this test, it was possible to find that a minimum clearance to the wall was required.

LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘)

  • Noh, Hanseok;Lee, Hyunsung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

Position Control of Micro Particles in a Fluid Flow Using Ultrasonic Standing Wave (정재초음파를 이용한 유동중 미세 입자 위치 제어)

  • Cho, Seung-Hyun;Seo, Dae-Cheol;Ahn, Bong-Young;Kim, Ki-Bok;Kim, Yong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • Using ultrasonic standing waves, micro particles submerged or flowing in fluid can be manipulated. Due to acoustic radiation force of ultrasound, particles are forced to move to pressure nodal or antinodal lines. In this work, we propose a method to control the position of micro particle in a flow by adjusting the frequency of the standing wave. To this end, standing wave field generation system including a few millimeter thick micro channel was established using an immersible ultrasonic transducer. The present generation system works valid in a frequency range between 2.0 MHz and 2.5 MHz. We observed the SiC particles in water moved to pressure nodal lines by the standing wave. The effect of the channel thickness and operating frequency was also investigated. Interestingly, it was shown that the operating frequency have a close relation with the location of the pressure nodal line. Consequently, it fan be said that the position of particle movement rail be controlled by adjusting the ultrasound frequency. The maximum range of the controllable position was about 261 micrometers under the given condition. The resulted observations reveal the possibility of various applications of the ultrasonic standing wave to the manipulation of particles submerged in a fluid.

A Real-time Distributed AGC System for a Hot Strip Mill (실시간 분산 열연 두께제어 시스템의 설계 및 현장적용)

  • Lee, Ho-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.922-930
    • /
    • 1999
  • This paper describes a new 14-CPU real-time distributed automatic gauge control (AGC) system for POSCO's No. 2 Hot Strip Mill at Pohang Works. The new AGC system has adopted gaugemeter AGC, Monitor AGC, and roll gap disturbance compensators. The computer system for the new AGC system has been developed based on VMEbus computer systems and a commercial real-time operating system. A VMEbus computer system is also used for the position servo control of hydraulic cylinders. All the application programs and input/output signals have been reasonably distributed over the control computer systems for the maximum reliability and effectiveness of the system. The new AGC system has been successfully used for the No. 2 Hot Strip Mill.