This study examines how open-ended tasks can be implemented with the support of redefined learning goals and teaching practices from a student-centered perspective. In order to apply open-ended tasks, learning goals should be adopted by individual student's cognitive levels in the classroom context rather than by designated goals from curriculum. Equitable opportunities to share children's mathematical ideas are also attainable through flexible management of lesson-time. Eventually, students can foster their meta-cognition in the process of abstraction of what they've learned through discussions facilitated by teachers. A pedagogical implication for professional development is that teachers need to improve additional teaching practices such as how to tailor tasks relevant to their classroom context and how to set norms for students to appreciate peer's mathematical ideas in the discussions.
본 연구의 목적은 개방형 과제의 특징을 인지적 난이도 관점에서 분석하는 것이다. 이를 위하여 고등학교 수학교과서 3종을 대상으로 수열 단원에 포함된 개방형 과제의 특징을 분석하였다. 연구 결과, 인지적 난이도 수준이 낮은 개방형 과제는 이전의 과제 또는 해당 과제 내에 절차를 포함하고 있는 특징이 있었다. 반면에 인지적 난이도 수준이 높은 개방형 과제는 구하고자 하는 것에 접근하기 위하여 새로운 조건을 능동적으로 탐구하거나 판단 근거를 요구하는 과제 또는 다양한 표상을 수열의 개념과 연결 짓거나 다양한 해답을 요구하는 특징이 있었다. 이러한 연구 결과는 의도된 교육과정 측면에서 인지적 난이도가 높은 개방형 과제의 특징을 구체화하였을 뿐 아니라 인지적 난이도가 높은 개방형 과제 개발에 그 방향성을 제공하였다는데 의의가 있다고 볼 수 있다.
수학 영재들은 타고난 수학적 소질과 적성, 지적인 능력과 창의성을 바탕으로 참신한 과제에 대한 도전적이고 창조적인 호기심을 가지고 있다. 영재아들의 창의적인 사고력을 길러주기 위해서는 다양한 방법으로 문제 해결에 접근하게 하고 전략적 시도를 할 수 있도록 만들어주어야 한다. 이런 관점에서 볼 때 개방적이고 비정형적인 문제를 영재 교육프로그램의 과제로 선정하는 것은 바람직하다 할 수 있다. 본 논문에서는 다양한 유형의 개방형 문제를 구안하고, 이를 토대로 영재 학급에서 학습 활동을 전개한 후, 문제해결 과정에서 영재아들의 수학적 사고 능력의 특성과 문제 해결 전략 사례를 분석하여, 개방형 과제를 활용한 초등학교 영재 수업에 관한 시사점을 얻고자 하였다.
Open-ended problems can foster deeper understanding of mathematical ideas, generating creative thinking and communication in students. High-order thinking tasks such as open-ended problems involve more ambiguity and higher level of personal risks for students than they are normally exposed to in routine problems. To explore the classroom-based factors that could support or inhibit such higher-order processes, this paper also describes two cases of Singapore primary school teachers who have successfully or unsuccessfully implemented an open-ended problem in their mathematics lessons.
The purpose of this study was to design and develop the processes of tasks and assessment rubrics of open-ended tasks, and those for the 5th graders of elementary school mathematics. 7 tasks were finally developed, and 'problem understanding', 'problem solving process', 'communication' were selected as the criteria for assessment rubrics. The result was that the ability of mathematical power covering problem understanding ability, problem solving ability and mathematical communication ability was low. Specifically, problem understanding ability was the highest, problem solving ability was middle, and mathematical communication ability was the lowest.
In this paper, we articulate what is a lesson for all learners with different cognitive levels and what kind of teaching practices are required to implement this type of lesson. For all learners' own sense-making, open-ended tasks are the primary sources to bring their various mathematical ideas. These tasks can be meaningfully implemented by appropriate teaching practices: providing enough time (for thinking deeply and for preparing a reply), acting intentionally (alternative wrapping up activities and appointment of a struggling student), and cultivating collaborative classroom norms (respecting peer's thinking and learning from peers). This exploratory study has the potential to help practitioners and researchers understand the complexity of the work of teaching and clarify how to deal with such complexity.
본 연구의 목적은 개방형 과제의 해법 공간을 분석하는 틀을 개발하고 그 유용성과 적용 가능성을 학생들의 해법 공간 분석 사례를 바탕으로 탐색하는 것이다. 문헌검토와 선행연구를 바탕으로, 학생들의 개방형 과제의 해법을 구조적으로 분석하는 틀로 결과 공간(Outcome spaces), 방법 공간(Method spaces), 표현 공간(Representation spaces)의 하위 공간으로 조직화한 해법 공간 분석 틀(OMR-framework)을 개발하였다. 약수와 배수 주제의 개방형 과제 유형 중 역 과제와 구성활동적 과제를 개발하고 초등학교 5~6학년 학생 181명에게 과제를 해결하게 하였다. 해법 공간 분석 틀(OMR-framework)을 적용하여 학생들의 해법 공간을 분석한 결과, 해법 공간과 방법 공간에서 역과제와 구성활동적 과제에 대한 학생의 약수와 배수 개념 이해의 특성과 문제해결에서 사용되는 가역적인 사고 및 조작과 구성의 사고 방법을 알 수 있었다. 그리고, 학생의 표현 공간에서 형식적인 수학적 표현 외에 학생들이 구성한 비형식적인 다양한 표현 방식을 분석할 수 있었다. 학생들이 해결한 것을 결과, 방법, 표현의 관점에서 해결의 특징을 분석할 수 있을 뿐 아니라 해법 공간을 이루는 결과 공간, 방법 공간, 표현 공간 사이의 연결성도 탐색할 수 있었다.
We believe new assessment strategies and practices need to be developed that will enable teachers and others to assess students' performance in a manner that reflect the 7th Korean curriculum reform vision for school mathematics. This research was conducted to develop the assessment tasks based on the current literatures such as National Council of Teachers of Mathematics (1999) and Korea Institute of Curriculum & Evaluation(KICE, 2002, 2003) in quadratic functions of the secondary school and to find the effect of these tasks by classifying students' responses. The research instrument were composed of three criteria, the previous knowledge, the application of quadratic functions, and the general properties in functions. The research data were collected from 32 high school students in a suburb of Seoul and sorted by their similarities and differences in mathematical understanding. Through the research, we could know more than ever before about how the students learned mathematics and about how to improve teachers' mathematical instruction.
학생의 수업 참여는 수업의 방향과 성과를 결정지을 뿐만 아니라 학업 성취 및 후속 학습의 지속성에 영향을 미친다. 본 연구는 학생의 수업 참여를 촉진하기 위한 방안으로 개방형 과제를 활용하는 수업이 지닌 시사점을 모색하기 위해 초등학교 5학년 중하위권 학생들을 대상으로 개방형 과제 활용 수업을 진행하여 학생들이 드러내는 수업 참여 양상을 분석하였다. 이로부터 교사의 발문에 자발적으로 답하거나 어려움을 참고 과제를 끝까지 수행하는 행동적 참여, 박수를 치거나 자리에서 일어나는 등의 즐거움을 표현하거나 자신의 감정을 적극적으로 드러내는 정서적 참여의 특징을 찾아볼 수 있었다. 또한 학생들은 자신의 생각을 말할 때 실생활 예를 들어 설명하거나 과제 해결에 사전 지식을 이용하였으며 과제를 다양한 방식으로 해결하려고 노력하는 인지적 참여 양상을 보였고, 친구의 의견을 물어 공동의 아이디어를 구성함으로써 과제를 해결하려고 노력하거나 모둠 활동에서 친구와 적극적으로 도움을 주고 받는 등의 사회적 참여 모습을 보였다. 이상은 개방형 과제를 활용하는 수업이 초등학생들의 수업 참여를 촉진하는 교수학적 방안이 될 수 있음을 시사한다. 나아가 본 연구는 효과적인 개방형 과제 활용 수업을 실행하는 데 교사의 지지와 긍정적인 피드백, 모둠 활동 및 소집단 토론으로 구성된 수업 방법, 놀이 및 게임 활동에 기반한 과제 제시 방식 등이 갖는 잠재적 중요성을 보여준다.
The Center for Science Gifted Education (CSGE) of Chongju National University of Education was established in 1998 with the financial support of the Korea. Science & Engineering Foundation (KOSEF). In fact, we had prepared mathematics and science gifted education program beginning in 1997. It was possible due to the commitment of faculty members with an interest in gifted education. Now we have 5 classes in Mathematics, two of which are fundamental, one of which is a strengthened second-grade class gifted elementary school students, and one a fundamental class, and one a strengthened class for gifted middle school students in Chungbuk province. Each class consists of 16 students selected by a rigorous examination and filtering process. Also we have a mentoring system for particularly gifted students in mathematics. We have a number of programs for Super-Saturday, Summer School, Winter School, and Mathematics and Science Gifted Camp. Each program is suitable for 90 or 180 minutes of class time. The types of tasks developed can be divided into experimental, group discussion, open-ended problem solving, and exposition and problem solving tasks. Levels of the tasks developed for talented elementary students in mathematics can be further divided into grade 5 and under, grade 6, and grade 7 and over. Types of the tasks developed can be divided into experimental, group discussion, open-ended problem solving, and exposition and problem solving task. Also levels of the tasks developed for talented elementary students in mathematics can be divided into the level of lower than grade 5, level of grade 6, and level of more than grade 7. Three tasks developed and practiced are reported in this article.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.