• Title/Summary/Keyword: Open-Loop-Control System

Search Result 300, Processing Time 0.028 seconds

A study on the multivariable control system tuning (다변수 제어 시스템의 동조에 관한 연구)

  • 주용진;서병설;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.456-458
    • /
    • 1986
  • A method for on-line tuning of the PID-controller parameters for a discrete-time multivariable process system is presented. And it is based on a step change in the controller set point. The system is presumed to be a linear, open loop stable and known one. The controller parameters are determined by the performance criterion and Fletcher-Powell methods.

  • PDF

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

Study on the Performance Characteristics of Urea-SCR System in the ETC Test (ETC 모드에서 Urea-SCR 시스템의 성능 특성 연구)

  • Ham, Yun-Young;Choi, Dong-Seok;Park, Yong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • To meet the NOx limit without a penalty of fuel consumption, urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, the performance characteristics of urea-SCR system with open loop control were assessed in the European Transient Cycle(ETC) for heavy duty diesel engine. The SCR inlet temperaure varied in the range of 200 to $340^{\circ}C$ in the ETC cycle. Open loop control calculated the urea flow rate based on the NOx and NSR map which gave for each combination of SCR inlet temperature and space velocity the normalized $NH_3$ to NOx stoichiometric ratio which resulted in a steady-state $NH_3$ slip of 20ppm. During the ETC cycle, the open loop control with the optimized NSR offset achieved NOx reduction of 80% while keeping the average $NH_3$ slip below 10ppm and maximum 20ppm. It was also found that NOx sensor was cross-sensitive to $NH_3$ and a control strategy for cross-sensitivity compensation was required in order to use a NOx sensor as feedback device.

Three-Channel Output Multiplexer Design Using Band-Pass Filter and Ultra-Wideband Antenna

  • Lee, Jung Nam;Park, Jong Kweon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.100-105
    • /
    • 2016
  • We have designed a three-channel output multiplexer (OMUX) using a band-pass filter and an ultra-wideband (UWB) antenna. The proposed band-pass filter is composed of an inner rectangular loop, an outer open stub, and a defected ground structure. The outer open stub can be used to control the pass band, and the inner rectangular loop can improve the insertion loss characteristics of the band-pass filter. The proposed band-pass filter, UWB antenna, and OMUX are fabricated and measured. The designed OMUX can cover the band group 1 (3,168-4,752 MHz) of WiX system. The measured radiation patterns are close to those of a conventional dipole antenna and the measured antenna gain varies from 1.8 dBi to 3 dBi over the operating frequency range.

An Experimental Application of Observer/controller Identification Algorithm to the System Identification of Inherently Unstable Systems

  • Park, Mun-Soo;Yang, Dong-Hoon;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.63.4-63
    • /
    • 2002
  • $\textbullet$ Closed System Identification for inherently unstable systems $\textbullet$ Application of Observer/controller Identification (OCID) algorithm to those systems $\textbullet$ An open-loop system model with corresponding controller and observer gains are identified using OCID $\textbullet$ Experimental example of the OCID algorithm for an inverted pendulum system operating in closed-loop $\textbullet$ Modal analysis and time response to the added distrubance are presented to evaluate the performance of the OCID algorithm.

  • PDF

Comparative Study between Two-loop and Single-loop Control of DC/DC Converter for PVPCS (PVPCS DC/DC 컨버터 모델링 및 2중 루프 제어와 단일 루프 제어의 특성 비교)

  • Kim, Dong-Hwan;Jung, Seung-Hwan;Song, Seung-Ho;Choi, Ju-Yeop;Choi, Ick;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.245-254
    • /
    • 2012
  • In photovoltaic system, the characteristics of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, the boost converter of a PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristics of the boost converter by comparing single-loop and two-loop control algorithm using both analog and digital control. Both proposed compensation methods have been verified with computer simulation to demonstrate the validity of the proposed control schemes.

A Study on a Fuzzy Controller for the Electronic Braking Force Distribution System (전자식 차량 제동력 배분 시스템을 위한 퍼지제어기의 연구)

  • 김승대;김훈모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.220-229
    • /
    • 2000
  • In the brake systems a proportioning valve which reduces the brake pressure at each wheel cylinder for anti-locking of rear wheels is closely related with the safety of vehicles. But, it is impossible for a present proportioning valve to exactly control brake pressure because mechanically it is an open loop control system. So, in this paper we describe a electronic brake pressure distribution system using a fuzzy controller in order to exactly control brake pressure using a close loop control system. The object of electronic brake pressure distribution system is to change an cut-in pressure and an valve slop of proportioning valve in order to obtain better good performance of brake system than with mechanical system.

  • PDF

Electronic Control of Braking Force Distribution for Vehicles Using a Direct Adaptive Fuzzy Controller

  • Kim, Hunmo;Kim, Seungdae;Sung, Yoon-Gyeoung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.66-80
    • /
    • 2001
  • In brake systems, a proportioning valve(P. V), which reduces the brake line pressure on each wheel cylinder for the anti-locking of rear wheels, is closely related to the safety of vehicles. However, it is impossible for current P. V. s to completely control brake line pressure because, mechanically, it is an open loop control system. In this paper we describe an electronic brake force distribution system using a direct adaptive fuzzy controller in order to completely control brake line pressure using a closed loop control system. The objective of the electronic brake force distribution system is to change the cut-in-pressure and the valve slop of the P. V in order to obtain better performance of the brake system than with mechanical systems.

  • PDF

Motion Control of Servo Cylinder Using Neural Network (신경회로망을 이용한 서보 실린더의 운동제어)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.955-960
    • /
    • 2004
  • In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The Neural Network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control.

Precision Control of a Piezoelectric Actuator Based on an Inverse Hysteresis Model (역 히스테리시스 모델에 기초한 압전 구동기의 정밀제어)

  • Park, Seung-Man;Ahn, Hyun-Sik;Kim, Do-Hyun;Song, Joong-Ho;Choy, Ick;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2368-2370
    • /
    • 2000
  • In this paper, we proposed an inverse hysteresis model to cancel the nonlinear hysteresis phenomenon of a piezoelectric actuator and design a feedback control system based on the inverse hysteresis model. The piezoelectric actuator performs much better in open-loop response. However, the nonlinear hysteresis phenomenon should be linearized and the closed-loop control should be executed to get the required performance in the area, where high-speed and high-accuracy are required. Thus, it is shown by simulation that a good position tracking performance can be obtained for the repetitive desired position trajectory.

  • PDF