• Title/Summary/Keyword: Open-Loop-Control System

Search Result 298, Processing Time 0.026 seconds

Characteristics of Non-gravity Fluidized Dryer (무중력 유동층 건조기의 건조특성에 관한 연구)

  • Kim, S.C.;Bae, D.K.;Han, J.W.;Kum, S.M.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.220-227
    • /
    • 2000
  • The purpose of this study is to develop the non-gravity fluidized dryer. In this non-gravity fluidized dryer the fluidized zone is produced by two paddles in mixer, which maximizes the surface area of materials and then heated air through the guiding panels dehumidify them. This can conduct the drying process quickly and control moisture contents to lower limits. The ventilation system is closed loop system, which can be changeable to open system, and can be used as a multi-purposed dryer in which mixing, drying, granulating and cooling process is conducted. In order to develop non-gravity fluidized dryer, in the first the fundamental experiments performed to mixing accuracy and then the other parts of dryer and control system were examined to check whether they were designed properly and operated harmoniously with mixer. Also the preparatory experiments were fulfilled to examine the efficiency and reliability of dryer. Lastly, on the basis of preparatory experiments in case the initial moisture contents, desired moisture contents, heated air velocity and heating temperature were vary, performance test for the non-gravity fluidized dryer carried out.

  • PDF

Microcomputer-Based Automatic Insulin Delivery System(Open-Loop Artificial Pancreas) (마이크로컴퓨터를 이용한 자동 인슐린 주입 장치에 관한 연구)

  • Yun, Jang-Hyeon;Min, Byeong-Gu;Kim, Jong-Sang
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.44-50
    • /
    • 1980
  • A microcomputer based automatic insulin del ivory system was designed to control the speed of the Infusion pump depending upon the required amount of insulin at one minute interval for 24 hours. The desired insulin pattern for a diabetic patient was computed by computer programs based on a mathematical model of the insulin transport where the transport parameters were obtained using a linear regression analysis of the measured changes of insulin concentration in normal subjects.

  • PDF

A Study on the Prediction of Propulsive Energy Loss Related to Automatic Steering of Ships

  • Sohn, Kyoung-Ho;Lee, Gyoung-Woo;Lim, Gun;Bae, Jeong-Cheul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1995.11a
    • /
    • pp.153-165
    • /
    • 1995
  • When an automatic course-keeping is introduced as is quite popular in modern navigation the closed-loop steering system consists of autopilot device power unit(or telemotor unit) steering gear ship dynamics and magnetic or gyro compass. We derive the mathematical model of each element of the automatic steering system. We provide a method of theoretical analysis on propulsive energy loss related to automatic steering of ships inthe open seas taking account of the on-off mechanism of power unit. Also we paid attention to dead band mechanism of autopilot device which is normally called weather adjustment. Next we make numerical calculation of the effects of autopilot control constants ont he propulsive energy loss for two kinds of ship a fishing boat and an ore carrier. Realistic sea and wind disturbances are employed in the calculation.

  • PDF

Reduction of Computing Time in Aircraft Control by Delta Operating Singular Perturbation Technique (델타연산자 섭동방법에 의한 항공기 동력학의 연산시간 감소)

  • Sim, Gyu Hong;Sa, Wan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.39-49
    • /
    • 2003
  • The delta operator approach and the singular perturbation technique are introduced. The former reduces the round-off error in the numerical computation. The latter reduces computing time by decoupling the original system into the fast and slow sub-systems. The aircraft dynamics consists of the Phugoid and short-period motions whether its model is longitudinal or lateral. In this paper, an approximated solutions of lateral dynamic model of Beaver obtained by using those two methods in compared with the exact solution. For open-loop system and closed-loop system, and approximated solution gets identical to the exact solution with only one iteration and without iteration, respectively. Therefore, it is shown that implementing those approaches is very effective in the flight dynamic and control.

Adaptive Control Method for a Feedforward Amplifier (피드포워드 증폭기의 적응형 제어 방법)

  • Kang, Sang-Gee;Yi, Hui-Min;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2004
  • A feedforward amplifier, which is composed of several components, is an open loop system. Therefore, feedforward amplifiers are apt to deteriorate its performance according to the environmental changes even though the cancellation performance and the linearization bandwidth of feedforward systems are superior to other linearization methods. A control method is needed for maintaining the original performance of feedforward amplifiers or to keep the desired performance within a little error bounds. In this paper, an adaptive control method using the steepest descent algorithm, which has a good convergence characteristic and is easy to implement, is suggested. The characteristics of the suggested control method compare with the characteristics of other control methods and the simulation results are presented.

Stroke Verification Test and Operational Characteristics Analysis of KSLV-I Kick Motor TVC Nozzle (나로호 킥모터 TVC 노즐 행정확인시험 및 특성 분석)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.158-168
    • /
    • 2012
  • This paper deals with TVC nozzle stroke verification test and corresponding analysis techniques related to kick motor TVC system of KSLV-I second stage. It is shown that the relationship between TVC stroke and potentiometer voltage is revealed via the open-loop stroke verification test, and other major operational parameters including nozzle alignment error, actuation error, neutral position, radius of nozzle rotation, location of nozzle rotation center, angle conversion coefficients, etc. are analyzed via the closed-loop stroke verification test. The TVC stroke verification test results for the first and second flight model of KSLV-I show that all TVC operational parameters of KSLV-I second stage were normally setup for the first and second flight tests.

Development of Digital Carriage for Continuous/Intermittent Welding (디지털식 연속/단속 용접용 캐리지 개발)

  • 감병오;김동규;김광주;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2002
  • This paper shows the results of the development of a small size of digital type continuous and intermittent welding auto-carriage based on microprocessor (Intel 80196KC) for welding process with long welding line. The developed welding auto-carriage loads welding torch and tracks welding line. It is an automaton largely used for welding process with a lot of long welding lines such as shipbuilding and structure. Most traditional auto-carriages have been developed based on analog circuit for open loop control. So this analog circuit welding auto-carriage cannon control welding speed. Specially welding auto-carriage for intermittent welding condition is so complicated and has the low precision of control performance in welding distance and non-welding distance. The auto-carriage developed in this paper has the following characteristics: It has not only functions of traditional carriage but also functions such as pseudo-welding process of big iron structures, intermittent welding in order to limit heat for welding thin plates, crater treatment of the final step of welding, acceleration at the initial step of welding and deceleration in the final step of welding. The main control board of auto-carriage, power supply system and DC motor drive wee developed and manufactured. The welding speed and the welding distance of the developed auto-carriage are controlled accurately by feedback control using photo-sensor. Hardware and software robust against the heat and noise produced on the welding process are developed.

Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

  • Xu, Huai-Bing;Zhang, Chun-Wei;Li, Hui;Tan, Ping;Ou, Jin-Ping;Zhou, Fu-Lin
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.281-303
    • /
    • 2014
  • In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass driver (AMD) systems has been installed on the top of the main structure. The structural principal directions in which the bending modes of the structure are uncoupled are proposed and verified based on the orthogonal projection approach. For the vibration control design in the principal X direction, the simplified model of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear motors are adopted. The dynamical models of the AMD subsystems are determined according to the open-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback (VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

The Effects of Water Flow Rates on the Performance of a Capillary Tube Solar Collector for Greenhouse Heating (온실 난방을 위한 모세관형 태양열 집열기의 성능에 미치는 유량의 효과에 관한 연구)

  • 유영선;장유섭;홍성기;윤진하;정두호;강영덕
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • To use effectively the solar energy in greenhouse heating, a high performance solar collector should be developed. And then the size of the solar collector and thermal storage tank should be determined through the calculation of heating load. The solar collector must be set in the optimum tilt angle and direction to take daily solar radiation maximally, and the flow rate of heat transfer fluid through the solar collector should be kept in the optimum range. In this research, the performance tests of a capillary tube solar collector were performed to determine the optimum water flow rate and the results summarized as follows. 1. The regressive equations for efficiency estimations of the capillary tube solar collector in the open loop were modeled in the water flow rate of 700-l,000 $\ell$/hr. 2. The optimum water flow rate of the solar collector was estimated by the second order polynomial regression and the maximum efficiency was 80% at the water flow rate of 850 $\ell$/hr. 3. The solar thermal storage system consisted of a capillary tube solar collector and a water storage tank was tested at the water flow rate of 850 $\ell$/hr in the closed loop, and obtained the solar thermal storage efficiency of 55.2%. 4. As the capillary tube solar collector engaged in this experiment was made of non-corrosive polyolefin tubes, its weight was as light as 1/30 of the flat plate solar collector made of copper tubes. Therefore it was considered to be suitable for the greenhouse heating system.

  • PDF

Performance Analysis of the Gamma Guidance Algorithm for Solid Rocket Kick Motors of Upper Stages of Space Launch Vehicles (위성발사체 상단의 고체로켓모터 유도를 위한 Gamma 유도 알고리듬 성능 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.709-716
    • /
    • 2022
  • In this paper the Gamma guidance law, which was used for IUS (Inertial Upper Stage), is applied for solid-motor guidance of a upper stage of a satellite launch vehicle. The RCS (Reaction Control System), which activates after burnout of the upper stage, is employed for the convergence of the guidance algorithm and compensation of velocity errors induced by the solid motor. The algorithm is also simplified by replacing the time-consuming numerical integration process to predict final vehicle states with Keplerian trajectories. The performance of the algorithm is evaluated by conducting 3-DOF computer simulations for off-nominal flight conditions. The numerical results show that Gamma guidance can reduce the orbit injection accuracy in comparison with that obtained by applying open-loop commands.