• Title/Summary/Keyword: Open source software

Search Result 621, Processing Time 0.032 seconds

The Effect of a Design Thinking-based Maker Education Program on the Creative Problem Solving Ability of Elementary School Students (디자인 사고 기반 메이커 교육 프로그램이 초등학생의 창의적 문제해결력에 미치는 영향)

  • Lee, Seungchul;Kim, Taeyoung;Kim, Jinsoo;Kang, Seongjoo;Yoon, Jihyun
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.1
    • /
    • pp.73-84
    • /
    • 2019
  • Maker movement is emerging as one of the key areas of the fourth industrial revolution in recent years. The maker movement is to create and share what users need using a variety of inexpensive production tools such as open source software and hardware, 3D printers and laser cutters. We think that the effect would be enhanced if design thinking is applied to elementary and middle school (K-12) class. The purpose of this study is to develop a design thinking-based maker education program and to apply it to classroom for clarify the effect on the creative problem solving ability of elementary school students. In order to verify the purpose of the research, students in the 5th-6th grades of elementary school were divided into a controlled group and an experimental group. The general lecture maker class was applied in the controlled group, and our developed design thinking-based maker class was simultaneously applied in the experimental group. The creative problem solving ability test was conducted before and after the test, and its effectiveness was verified using statistical t-test. In conclusion, this study suggests that design thinking-based maker education program has a positive effect on elementary school students' creative problem solving ability.

Deep Learning Based Rescue Requesters Detection Algorithm for Physical Security in Disaster Sites (재난 현장 물리적 보안을 위한 딥러닝 기반 요구조자 탐지 알고리즘)

  • Kim, Da-hyeon;Park, Man-bok;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • If the inside of a building collapses due to a disaster such as fire, collapse, or natural disaster, the physical security inside the building is likely to become ineffective. Here, physical security is needed to minimize the human casualties and physical damages in the collapsed building. Therefore, this paper proposes an algorithm to minimize the damage in a disaster situation by fusing existing research that detects obstacles and collapsed areas in the building and a deep learning-based object detection algorithm that minimizes human casualties. The existing research uses a single camera to determine whether the corridor environment in which the robot is currently located has collapsed and detects obstacles that interfere with the search and rescue operation. Here, objects inside the collapsed building have irregular shapes due to the debris or collapse of the building, and they are classified and detected as obstacles. We also propose a method to detect rescue requesters-the most important resource in the disaster situation-and minimize human casualties. To this end, we collected open-source disaster images and image data of disaster situations and calculated the accuracy of detecting rescue requesters in disaster situations through various deep learning-based object detection algorithms. In this study, as a result of analyzing the algorithms that detect rescue requesters in disaster situations, we have found that the YOLOv4 algorithm has an accuracy of 0.94, proving that it is most suitable for use in actual disaster situations. This paper will be helpful for performing efficient search and rescue in disaster situations and achieving a high level of physical security, even in collapsed buildings.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

A Study on the Methods of Building Tools and Equipment for Digital Forensics Laboratory (디지털증거분석실의 도구·장비 구축 방안에 관한 연구)

  • Su-Min Shin;Hyeon-Min Park;Gi-Bum Kim
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.21-35
    • /
    • 2022
  • The use of digital information according to the development of information and communication technology and the 4th industrial revolution is continuously increasing and diversifying, and in proportion to this, crimes using digital information are also increasing. However, there are few cases of establishing an environment for processing and analysis of digital evidence in Korea. The budget allocated for each organization is different and the digital forensics laboratory built without solving the chronic problem of securing space has a problem in that there is no standard that can be referenced from the initial configuration stage. Based on this awareness of the problem, this thesis conducted an exploratory study focusing on tools and equipment necessary for building a digital forensics laboratory. As a research method, focus group interviews were conducted with 15 experts with extensive practical experience in the digital forensic laboratory or digital forensics field and experts' opinions were collected on the following 9 areas: network configuration, analyst computer, personal tools·equipment, imaging devices, dedicated software, open source software, common tools/equipment, accessories, and other considerations. As a result, a list of tools and equipment for digital forensic laboratories was derived.

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.

Design and Implementation of an Execution-Provenance Based Simulation Data Management Framework for Computational Science Engineering Simulation Platform (계산과학공학 플랫폼을 위한 실행-이력 기반의 시뮬레이션 데이터 관리 프레임워크 설계 및 구현)

  • Ma, Jin;Lee, Sik;Cho, Kum-won;Suh, Young-kyoon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2018
  • For the past few years, KISTI has been servicing an online simulation execution platform, called EDISON, allowing users to conduct simulations on various scientific applications supplied by diverse computational science and engineering disciplines. Typically, these simulations accompany large-scale computation and accordingly produce a huge volume of output data. One critical issue arising when conducting those simulations on an online platform stems from the fact that a number of users simultaneously submit to the platform their simulation requests (or jobs) with the same (or almost unchanging) input parameters or files, resulting in charging a significant burden on the platform. In other words, the same computing jobs lead to duplicate consumption computing and storage resources at an undesirably fast pace. To overcome excessive resource usage by such identical simulation requests, in this paper we introduce a novel framework, called IceSheet, to efficiently manage simulation data based on execution metadata, that is, provenance. The IceSheet framework captures and stores each provenance associated with a conducted simulation. The collected provenance records are utilized for not only inspecting duplicate simulation requests but also performing search on existing simulation results via an open-source search engine, ElasticSearch. In particular, this paper elaborates on the core components in the IceSheet framework to support the search and reuse on the stored simulation results. We implemented as prototype the proposed framework using the engine in conjunction with the online simulation execution platform. Our evaluation of the framework was performed on the real simulation execution-provenance records collected on the platform. Once the prototyped IceSheet framework fully functions with the platform, users can quickly search for past parameter values entered into desired simulation software and receive existing results on the same input parameter values on the software if any. Therefore, we expect that the proposed framework contributes to eliminating duplicate resource consumption and significantly reducing execution time on the same requests as previously-executed simulations.

Implementation of PersonalJave™ AWT using Light-weight Window Manager (경량 윈도우 관리기를 이용한 퍼스널자바 AWT 구현)

  • Kim, Tae-Hyoun;Kim, Kwang-Young;Kim, Hyung-Soo;Sung, Min-Young;Chang, Nae-Hyuck;Shin, Heon-Shik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.240-247
    • /
    • 2001
  • Java is a promising runtime environment for embedded systems because it has many advantages such as platform independence, high security and support for multi-threading. One of the most famous Java run-time environments, Sun's ($PersonalJave^{TM}$) is based on Truffle architecture, which enables programmers to design various GUIs easily. For this reason, it has been ported to various embedded systems such as set-top boxes and personal digital assistants(PDA's). Basically, Truffle uses heavy-weight window managers such as Microsoft vVin32 API and X-Window. However, those window managers are not adequate for embedded systems because they require a large amount of memory and disk space. To come up with the requirements of embedded systems, we adopt Microwindows as the platform graphic system for Personal] ava A WT onto Embedded Linux. Although Microwindows is a light-weight window manager, it provides as powerful API as traditional window managers. Because Microwindows does not require any support from other graphics systems, it can be easily ported to various platforms. In addition, it is an open source code software. Therefore, we can easily modify and extend it as needed. In this paper, we implement Personal]ava A WT using Microwindows on embedded Linux and prove the efficiency of our approach.

  • PDF

A Study on the Technology Acceptance Factors of the Public Cloud Computing Services (공공 클라우드 컴퓨팅 서비스의 기술수용 결정요인 연구)

  • Kim, Dae Ho;Kim, Tae Hyung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.8 no.2
    • /
    • pp.93-106
    • /
    • 2013
  • Cloud computing services have became an hot issues in business fields while the IT-related global company such as Amazon, MS, and Google took part in. The cloud computing makes it possible to share in the form of outsourcing of hardware and software through the Internet, to build a distributed computing environment via multiple terminals, and to reduce the cost using open source. Such a cloud computing services have not shown any significant growth in Korea yet compared to other countries. Therefore, in this study focusing on public cloud computing services, it is intended to analyze the determinants of public cloud computing services using the technology model. Thus, for users using public cloud services, we conducted a questionnaire survey from the beginning of January 2013 to the end of February 2013. And we derived a research model based on the Technology Acceptance Model(TAM). As a result of this study, it shows that personal aspects significantly impacts on the perceived usability, service aspects, systems aspects, and the intent of the technology acceptances. System aspects significantly effect on the intent of technology acceptances. Perceived usability significantly effects on the service aspects and the systems aspects. The main factors effecting on the intent of the technology acceptances are system aspects and perceived usability in order. And it shows that the personal aspects decreases the intent of the technology acceptances.

  • PDF

Design and Implementation of an Efficient Web Services Data Processing Using Hadoop-Based Big Data Processing Technique (하둡 기반 빅 데이터 기법을 이용한 웹 서비스 데이터 처리 설계 및 구현)

  • Kim, Hyun-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.726-734
    • /
    • 2015
  • Relational databases used by structuralizing data are the most widely used in data management at present. However, in relational databases, service becomes slower as the amount of data increases because of constraints in the reading and writing operations to save or query data. Furthermore, when a new task is added, the database grows and, consequently, requires additional infrastructure, such as parallel configuration of hardware, CPU, memory, and network, to support smooth operation. In this paper, in order to improve the web information services that are slowing down due to increase of data in the relational databases, we implemented a model to extract a large amount of data quickly and safely for users by processing Hadoop Distributed File System (HDFS) files after sending data to HDFSs and unifying and reconstructing the data. We implemented our model in a Web-based civil affairs system that stores image files, which is irregular data processing. Our proposed system's data processing was found to be 0.4 sec faster than that of a relational database system. Thus, we found that it is possible to support Web information services with a Hadoop-based big data processing technique in order to process a large amount of data, as in conventional relational databases. Furthermore, since Hadoop is open source, our model has the advantage of reducing software costs. The proposed system is expected to be used as a model for Web services that provide fast information processing for organizations that require efficient processing of big data because of the increase in the size of conventional relational databases.

Nonlinear Irregular Waves-current Interaction on Flow Fields with Wave Breaking around Permeable Submerged Breakwater (투과성잠제 주변에서 쇄파를 동반한 불규칙파-흐름장의 상호작용)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.39-50
    • /
    • 2018
  • In this study, the nonlinear interaction of irregular waves with wave breaking and currents around permeable submerged breakwater was investigated with the aid of olaFlow model which is open source CFD software published under the GPL license. The irregular wave performance of olaFlow applied in this study was verified by comparing and evaluating the target frequency spectrum and the generated frequency spectrum for applicability to irregular waves. Based on the applicability of this numerical model to irregular wave fields, in the coexistence fields of irregular waves and currents, the characteristics of wave height, frequency spectrum, breaking waves, averaged velocity and turbulent kinetic energy around porous submerged breakwater with the respect to the beach type and current direction versus wave propagation were carefully investigated. The numerical results revealed that the shape of wave breaking on the crown of the submerged breakwater and the formation of the mean flow velocity around the structure depend greatly on the current directions and the type of the beach. In addition, it was found that the wave height fluctuation due to the current direction with respect to the wave propagation is closely related to the turbulent kinetic energy.