• Title/Summary/Keyword: Open ground excavation

Search Result 39, Processing Time 0.029 seconds

Determination of priorities for management to reduce collapse accident of open excavation and road sink in urban areas (도심지 개착식 굴착공사 붕괴사고 및 도로함몰 저감을 위한 우선 관리 요소 결정)

  • Seong, Joo-Hyun;Jung, Min-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.489-501
    • /
    • 2017
  • The collapse accidents during a open ground excavation in urban areas not only lead to human injuries and material damages in the construction site, but also lead to road sinks and damages to the adjacent facilities due to settlement of ground around the construction site. Therefore, during a open ground excavation in the urban areas, it is necessary to thoroughly prepare for prevention of collapse accidents, and consider whole construction stage such as planning, design and construction. In this study, the priorities to be managed mainly were obtained in order to prevent collapse accidents during a open ground excavation. After analyzing results from past accidents cases for open ground excavations, priorities were evaluated regarding collapse-inducing elements using the Delphi technique which is a decision-making method by consensus among experts. As a result, insufficient groundwater treatment, bad geotechnical investigation and instability on construction, etc. were obtained as priorities for prevention of collapse accidents.

Numerical Analysis and Exploring of Ground Condition during Groundwater Drawdown Environment in Open-cut Type Excavation (개착식 굴착공사시 지하수위 저하로 인한 지반상태 탐사 및 해석기법 연구)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.93-105
    • /
    • 2018
  • Precise investigation and interpretation of the ground subsidence risk factors needed to predict and evaluate the settlement problems of the surrounding ground due to the ground excavation. There are various geophysical exploration methods to investigate the ground subsidence risk factors. However, there are factors that influence the characteristics of the underground medium in these geophysical methods, and the actual soil contains complex factors affecting geophysical exploration. Therefore, it is necessary to analyze the effects on the geophysical methods based on the understanding of the geotechnical properties of soil. In this study, a test bed was constructed to consider various complicated factors in the complex ground and the ground behavior was analyzed by numerical analysis. In addition, we analyzed the limitations on investigating the ground subsidence risk factors through ground penetration radar (GPR) survey. As a result, ground subsidence of Open-cut Type Excavation is caused by various factors. Especially, in the case of soft ground condition, it was found that it was greatly influenced by the flow change of groundwater level. At the center frequency of GPR of 250 MHz, the attenuation of the electromagnetic wave is severely attenuated in the clay with high electrical conductivity, making it difficult to penetrate deeply into the ground (4 m below the surface). As the electromagnetic waves pass through the groundwater level below the groundwater, the attenuation of the electromagnetic waves becomes severe.

Ground Deformation Evaluation during Vertical Shaft Construction through Digital Image Analysis

  • Woo, Sang-Kyun;Woo, Sang Inn;Kim, Joonyoung;Chu, Inyeop
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.285-293
    • /
    • 2021
  • The construction of underground structures such as power supply lines, communication lines, utility tunnels has significantly increased worldwide for improving urban aesthetics ensuring citizen safety, and efficient use of underground space. Those underground structures are usually constructed along with vertical cylindrical shafts to facilitate their construction and maintenance. When constructing a vertical shaft through the open-cut method, the walls are mostly designed to be flexible, allowing a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the displacement of the surrounding ground. This study simulated stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model experiment. One quadrant of the axisymmetric vertical shaft and the ground were modeled, and ground excavation was simulated by shrinking the vertical shaft. The deformation occurring on the entire ground during the excavation was continuously evaluated through digital image analysis. The digital image analysis evaluated complex ground deformation which varied with wall displacement, distance from the wall, and ground depth. When the ground deformation data accumulate through the method used in this study, they can be used for developing shaft wall models in future for analyzing the earth pressure acting on them.

A Study for Drainage Pipe Construction Method using a Boring Machine (천공장치를 이용한 배수설비 연결관 시공 기술에 관한 연구)

  • Chang, Jae-Goo;Kang, Seon-Hong;Kim, Dong-Eun;Jung, Tae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.869-875
    • /
    • 2011
  • Ministry of Environment has been promoting BTL business of the sewer rehabilitation which continues from 2005 up to now. Sewer rehabilitation is classified into three parts : wastewater pipe rehabilitation, rainwater pipe rehabilitation and drainage equipment rehabilitation. Drainage equipment rehabilitation is that drainage pipe connects wastewater pipe directly without water-purifier. In the drainage equipment construction, it is inevitable to have the damage of ground structures(wall, gate and U drain, etc) when an open excavation method is used. Therefore it is necessary to develop non-excavation method to connect drainage pipe and wastewater pipe like jacking method to avoid the damage of ground structure. This paper has conducted an analysis of the non-excavation method using a boring machine attached to backhoe, which is issued the verification certificate of environmental technology according to the Development of and Support for Environmental Technology Act, article.7. The index set in this analysis was sectionalized to the condition of construction, the grade of drainage pipe, the size of excavated hole, the amount of waste cement concrete and asphalt concrete and the benefit effect compared to open excavation method.

UNDERGROUND WATER PROBLEMS IN DEEP EXCAVATION CONSTRVCTION CONTROL AGAINST BOILING FAILURE IN DEEP EXCAVATION IN SANDY GROUND BY FIELD MONITORING

  • Iwasaki, Yoahinori
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1990.10a
    • /
    • pp.97-110
    • /
    • 1990
  • This paper presents a case history of a deep open cut excavation of Nakagawa section for Futuoka Subway construction which adopted observational mettled against boiling failure and completed with success by modifying construction based upon field monitoring. One of the difficult conditions for the excavation was sandy layer with high water pressure which was anticipated boiling failure. The boiling was generally considered as one of the difficult phenomena to work with the observational method because of its unpredictable catastrophic nature. Laboratory experiments showed the existence of the prefailure movements of the ground and the possibility of the application of the observational method against the boiling failure. Construction step was planned to be modified, if necessary, based upon field monitoring and was completed with success.

  • PDF

Development of 3-D Flow Model for Porous Media with Scenario-based Ground Excavation (지반굴착 시나리오 기반의 다공성 매질에 대한 3차원 유동해석모델 구축)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In recent years, ground subsidence has been frequently occurred by underground cavities due to the excessive groundwater inflow, caused by poor construction and management, during tunnel excavation and underground structure construction. In this study, a numerical model (SEEFLOW3D) was developed to estimate groundwater fluctuations for saturated-unsaturated poros media, evaluates the impact on ground excavation with open cut and non-open cut scenarios. In addition, the visual MODFLOW was applied to demonstrate the verification of the model compared with both results. Our results indicated that the RMSE and NRMSE was obtained to range over -3.95~5.7% and 0.56~4.62%, respectively. The developed model was expected to estimate groundwater discharges and apply analysis tool for optimum design of waterproof wall in future.

Application of Rock Splitter to Rock Excavation in an Open pit (노천현장 암 파쇄 굴착에 따른 할암공법의 적용성 고찰)

  • Won, Yeon-Ho;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • This study is investigated the extent of the noise and ground vibration in an adjacent zone of a cattle pen and an antiquated housing structures for judgement of the spot applicability on the extents of the noise and ground vibration of the rock-splitting method by an oil pressure. It is studied by measuring and analysing in an adjacent position the extents of the noise and ground vibration according to the work process of the rock-splitting method, such as drilling, rock-splitting, arranging rock, loading and by being compared with the permitted level on the noise and ground vibration fixed at the spot. To the results, it is identified that the influence to the noise has to be considered, even if the rock-splitting method is applied as an excavation method to lower a ground vibration by the classification on blasting method of the ministry of land, transport and marine affairs.

Correction of the Ground Subsidence Risk Ratings during Open Cut Excavation (개착식 굴착공사 중 지반함몰 위험등급 분류시트의 등급 보정에 관한 연구)

  • Shin, Sang-Sik;Kim, Hak Joon
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • Ground subsidence risk ratings obtained from the site investigation during pre-excavation stages could be changed depending on the parameters revealed during construction activities. A method of correcting the pre-excavation ground subsidence risk ratings based on the site conditions observed in the field is suggested in this study. The elevation of groundwater table during the excavation may be different from the predicted value depending on the application of waterproofing methods and construction conditions. The drastic drawdown of groundwater table during the excavation could cause ground subsidence due to soil volume decrease related to consolidation or compression of the ground, whereas the rising of groundwater table caused by the intense rainfall may result in a high potential for ground subsidence due to heaving or boiling of the excavation bottom. Excessive displacements of retaining walls or ground settlements may cause ground subsidence, which also results in a high risk of ground subsidence caused by the destruction of buried pipelines. Reevaluation of ground subsidence risk ratings is suggested considering the fluctuation of groundwater table, condition of groundwater leakage, measured ground displacements, and soil types. Finally, the ground subsidence risk rating system is improved for better evaluation by using 12 factors in 5 categories.

Analysis of GPR Exploration Limit of Open-Cut Type Excavation (개착식 굴착현장의 GPR 탐사한계 분석기법 연구)

  • Han, Yushik;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Accurate exploration of the risk factors of the ground subsidence is needed to predict and evaluate the subsidence of the surrounding ground due to the excavation of the ground. In this study, we analyzed the distribution of soil relaxation area by analyzing the behavior around the ground excavation site and simulated the GPR exploration under various conditions. As a result, Although there are some differences according to the water content, distribution of the strata and the distribution of the relaxation region were confirmed in the unsaturated soil, and it was found that there was a difficulty in the GPR exploration in the saturated soil.

Experimental study to determine the optimal tensile force of non-open cut tunnels using concrete modular roof method

  • Jung, Hyuk-Sang;Kim, Jin-Hwan;Yoon, Hwan-Hee;Sagong, Myung;Lee, Hyoung-Hoon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.229-236
    • /
    • 2022
  • In this study, a model experiment and field experiment was conducted to introduce the optimal tensile force when constructing a non-open cut tunnel according to the ground conditions of sandy soil. CMR (Concrete Modular Roof) method is economical because of the high precision and excellent durability, and corrosion resistance, and the inserted parts can be used as the main structure of a tunnel. In addition the CMR method has a stable advantage in interconnection because the concrete beam is press-fitted compared to the NTR (New Tubular Roof) method, and the need for quality control can be minimized. The ground conditions were corrected by adjusting the relative density of sandy soil during the construction of non-open cut tunnels, and after introducing various tensile forces, the surface settlement according to excavation was measured, and the optimal tensile force was derived. As a result of the experiment, the amount of settlement according to the relative density was found to be minor. Furthermore, analysis of each tensile force based on loose ground conditions resulted in an average decrease of approximately 22% in maximum settlement when the force was increased by 0.8 kN per segment. Considering these results, it is indicated that more than 2.0 kN tensile force per segment is recommended for settlement of the upper ground.