• Title/Summary/Keyword: Open cup tester

Search Result 47, Processing Time 0.023 seconds

The Measurement of Combustible Properties of Acetic Anhydride for the Compatibility of MSDS (MSDS 적정성을 위한 아세틱안하이드리드의 연소특성치 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • For the safe handling of acetic anhydride, this study was investigated the explosion limits of acetic anhydride in the reference data. And the lower flash points, upper flash points, and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower and upper explosion limits of acetic anhydride by the investigation of the literatures recommended 2.9 Vol% and 10.3 Vol.%, respectively. The lower flash point of acetic anhydride by using Setaflash closed-cup tester was experimented $49^{\circ}C$. The lower flash point acetic anhydride by using Tag and Cleveland open cup tester were experimented $55^{\circ}C$and $62^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acetic anhydride. The experimental AIT of acetic anhydride was $350^{\circ}C$.

The Measurement of Lower Flash Point for tert-Pentanol+n-Decane System Using Tag Open-Cup Tester (Tag 개방식 장치를 이용한 tert-Pentanol+n-Decane 계의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.41-46
    • /
    • 2012
  • The flash point the lowest temperature at which the concentration of vapor of the substance in the air reaches the lower flammability limit(LFL), and is one of the most important physical properties used to determine the potential for fire and explosion hazards of industrial materials. The most published flash point data was for pure components and the flash points of the binary solutions that have flammable components, appear to be scarce in the literature. In the present study, the flash points of tert-pentanol+n-decane system were measured by Tag open-cup tester. The measured data were compared with the values calculated by the Raoult's law and the optimization methods based on the Wilson and NRTL equations. The calculated values by optimization methods were found to be better than those based on the Raoult's law.

The Measurement of Flash Point for Unflammable-Flammable Binary Mixtures(CCl4+o-Xylene and CCl4+p-Xylene) Using Open Cup Tester (개방식 장치를 이용한 난연성-가연성 이성분계 혼합물(CCl4+o-Xylene and CCl4+p-Xylene)의 인화점 측정)

  • Kim, Chang-Seob;Lee, Sungjin;Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.18-23
    • /
    • 2015
  • The flash point is used to categorize inflammable liquids according to their relative flammability. The flash point is important for the safe handling, storage, and transportation of inflammable liquids. The flash point temperature of two binary liquid mixtures($CCl_4+o-xylene$ and $CCl_4+p-xylene$) has been measured for the entire concentration range using Tag open cup tester. The flash point temperature was estimated using Raoult's law, UNIQUAC model and empirical equation. The experimentally derived flash point was also compared with the predicted flash point. The empirical equation is able to estimate the flash point fairly well for $CCl_4+o-xylene$ and $CCl_4+p-xylene$ mixture.

The Measurement and Estimation of Minimum Flash Point Behavior for Binary Mixtures Using Tag Open-Cup Tester (Tag 개방식 장치를 이용한 이성분계 혼합물의 최소인화점 현상의 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.50-55
    • /
    • 2008
  • The flash points for the systems, ethlybenzene+n-butanol and ethlybenzene+n-hexanol, were measured by using Tag open-cup tester (ASTM D1310-86). These binary mixtures exhibited MFPB (minimum flash point behavior), which leads to the minimum on the flash point vs composition curve. The experimental data were compared with the values calculated by the Raoult's law, the UNIQUAC equation and the NRTL equation. The calculated values based on the UNIQUAC and NRTL equations were found to be better than those based on the Raoult's law. It was concluded that the UNIQUAC and NRTL equations were more effective than the Raoult' law at describing the activity coefficients for nonideal solution such as the ethlybenzene+n-butanol and ethlybenzene+n-hexanol systems. And the predictive curve of the flash point prediction model based on the NRTL equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the UNIQUAC equation.

  • PDF

The Measurement and Investigation of Fire and Explosion Characteristics of Cyclohexanone (사이클로헥사논의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.28-34
    • /
    • 2011
  • For the safe handling of cyclohexanone, the explosion limits at $25^{\circ}C$ were investigated. The lower flash points and AITs (auto-ignition temperatures) by ignition time delay for cyclohexanone were experimented. By using the literatures data, the lower and upper explosion limits of cyclohexanone recommended 1.1 Vol.% ($100^{\circ}C$) and 9.4 Vol.%, respectively. The lower flash points of cyclohexanone were experimented $42{\sim}43^{\circ}C$ by using closed-cup tester and $49{\sim}51^{\circ}C$ by using open cup tester. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for cyclohexanone and the experimental AIT of cyclohexanone was $415^{\circ}C$.

The Measurement and Estimation of Lower Flash Point for o-Xylene+n-Pentanol and m-Xylene+n-Hexanol Systems Using Tag Open-Cup Tester (Tag 개방식 장치를 이용한 o-Xylene+n-Pentanol 계와 m-Xylene+n-Hexanol 계의 하부인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin;Jeong, Kee-Sin
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.19-25
    • /
    • 2010
  • The flash points for the systems, o-xylene+n-pentanol and m-xylene+n-hexanol, were measured by using Tag open-cup tester(ASTM D1310-86). The experimental data were compared with the values calculated by the Raoult's law and the optimization method using van Laar and Wilson equations. The calculated values based on the optimization method were found to be better than those based on the Raoult's law. The predictive curve of the flash point prediction model based on the van Laar equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the Wilson equation.

Measurement and Prediction of Fire and Explosion Properties of 3-Hexanone (3-헥사논의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.33-38
    • /
    • 2013
  • For the safe handling of 3-hexanone(ethyl propyl ketone), this study was investigated the explosion limits of 3-hexanone in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of 3-hexanone by using closed-cup tester were experimented at $18^{\circ}C$. The lower flash points of 3-hexanone by using open cup tester were experimented in $27^{\circ}C{\sim}32^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for 3-hexanone. The experimental AIT of 3-hexanone was at $425^{\circ}C$. The lower explosion limit( LEL) by the measured lower flash point of 3-hexanone was calculated as 1.21 Vol%.

The Measurement of Combustible Properties of Cyclohexanol (사이클로헥산올의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.64-68
    • /
    • 2014
  • For the safe handling of cyclohexanol, this study was investigated the explosion limits of cyclohexanol in the reference data. The flash points and auto-ignition temperatures (AITs) by ignition delay time were experimented. The lower flash points of cyclohexanol by using closed-cup tester were experimented in$60^{\circ}C{\sim}64^{\circ}C$. The lower flash points of cyclohexanol by using open cup tester were experimented in $66^{\circ}C{\sim}68^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for cyclohexanol. The AIT of cyclohexanol was experimented as $297^{\circ}C$. The lower explosion limit (LEL) and the upper explosion limit UEL) by the measured the lower flash point and the upper flash point of cyclohexanol were calculated as 0.95 Vol% and 10.7 Vol%, respectively.

Measurement and Prediction of Combustion Properties of Styrene (스티렌의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong;Na, Byeong-Gyun
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.70-76
    • /
    • 2013
  • For the safe handling of styrene, this study was investigated the explosion limits of styrene in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. As a results, the lower and upper explosion limits of styrene recommended 0.9 Vol.% and 8.0 Vol.%, respectively. The lower flash points of styrene by using closed-cup tester were experimented $29^{\circ}C{\sim}31^{\circ}C$. The lower flash points of styrene by using open cup tester were experimented $32^{\circ}C{\sim}36^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for styrene. The experimental AIT of styrene was $460^{\circ}C$.

The Measurement of Combustible Characteristics of n-Undecane (노말언데칸의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • For the safe handling of n-undecane, the lower flash points and the upper flash point, fire point, AITs (auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-undecane were calculated. The lower flash points of n-undecane by using closed-cup tester were measured $59^{\circ}C$ and $67^{\circ}C$. The lower flash points of n-undecane by using open cup tester were measured $67^{\circ}C$ and $72^{\circ}C$, respectively. The fire point of n-undecane by using Cleveland open cup tester was measured $74^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-undecane. The experimental AIT of n-undecane was $198^{\circ}C$. The estimated lower and upper explosion limit by using measured lower flash point $59^{\circ}C$ and upper flash point $83^{\circ}C$ for n-undecane were 0.65 Vol.% and 2.12 Vol.%.