• Title/Summary/Keyword: Open cell foam

Search Result 38, Processing Time 0.023 seconds

Numerical Simulations of Added Resistance and Motions of KCS in Regular Head Waves (선수 규칙파 중 KCS의 부가저항 및 운동성능 수치해석)

  • Seo, Seonguk;Park, Sunho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.132-142
    • /
    • 2017
  • As the International Maritime Organization (IMO) recently introduced the Energy Efficiency Design Index (EEDI) for new ships building and the Energy Efficiency Operational Indicator (EEOI) for ship operation, thus an accurate estimation of added resistance of ships advancing in waves has become necessary. In the present study, OpenFOAM, computational fluid dynamics libraries of which source codes are opened to the public, was used to calculate the added resistance and motions of the KCS. Unstructured grid using a hanging-node and cut-cell method was used to generate dense grid around a wave and KCS. A dynamic deformation mesh method was used to consider the motions of the KCS. Five wavelengths from a short wavelength (${\lambda}/LPP=0.65$) to a long wavelength (${\lambda}/LPP=1.95$) were considered. The added resistance and the heave & pitch motions calculated for various waves were compared with the results of model experiments.

Effects of Chain Extender and Inorganic Filler on the Properties of Semi-Rigid Polyurethane Foams (반경질 폴리우레탄 발포체의 물성에 대한 사슬 연장제와 무기 충전제의 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The physical properties of polymeric foams depend on the density of foams, physical properties of base polymers, the content of open cells, and cell structures including the size and its distribution, the shape of cell, and the thickness of skin layer. The foam density is affected by the chemistry of raw materials, the concentration of crosslinking agent and the blowing agent as well as the operating parameters during production process. In this study, the basic formulations of foams are composed of polyester polyol, MDI, amine catalyst, tin catalyst, silicone surfactant, and water. Cross-linking density of polyurethane was increased by using chain extenders. Also, the mechanical properties of polyurethane foam were improved by using the inorganic fillers (silica 1,2 and talc 1,2) having different $SiO_2$ contents and particle sizes. We investigated the properties of modulus, tensile strength, compressive strength and hardness of foams obtained by changing kind of inorganic filler and chain extender, and observed the distribution of inorganic filler as well as variation of cell size within the foams by electron microscopy.

Research on warmth-keeping, anti-bacteria and deodorant treatment for feet, the active organ of human body (행동기관으로서 발의 보온 및 항균방취에 대한 연구)

  • 한상덕;이상도;정중희
    • Journal of the Ergonomics Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.41-44
    • /
    • 1987
  • Researches were made on foot-warming, anti-bacteria and deodorant treatment. Feet, the very important organ to human body, perspire much and their temperature is lower than those of other parts. Hence, keeping feet warm, sanitary and deodorant is the area of this study. Latex sponge of activated carbon, impregnated open cell foam, treated with Vikol DZ-anti-bacteria finishing agent, was developed and tested for warmth-keeping by KSK 0560 test method and for sanitization by AATCC 90 HALO test method and for deodorization by wearing tests. The results show that the new developed latex spongee has warmth-keeping ratio of 2.5 times higher than that of the conventional spong and it has an excellent anti-bacteria effect. Actual wearing function tests also show that it improves significantly the performance of deodorization, sanitization, warmth-keeping and bulkiness.

  • PDF

Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer (난류 경계층에서 컴플라이언트 코팅과 점탄성 벽면의 방사 소음에 관한 실험적 연구)

  • Lee Seungbae;Lee Chang-Jun;Kwon O-Sup;Jeon Woo-Pyung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.779-782
    • /
    • 2002
  • We examine the problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick, open-cell foam with fabric covering and a viscoelastic painted plate of 1mm thick over an acoustic board of 4m thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber ($k_{ch}$) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

  • PDF

Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer (난류 경계층에서 컴플라이언트 코팅된 벽면과 점탄성 벽면의 방사 소음에 관한 실험적 연구)

  • Lee, Chang-Jun;Lee, Seung-Bae;Kwon, O-Sup;Jun, Woo-Pyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.294-301
    • /
    • 2003
  • We examine a problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick. open-cell foam with fabric covering and a viscoelastic-painted plate of 1mm thick over an acoustic board of 4mm thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber (k$_{c}$h) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

Characteristics and osteogenic effect of zirconia porous scaffold coated with ${\beta}$-TCP/HA

  • Song, Young-Gyun;Cho, In-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.285-294
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate the properties of a porous zirconia scaffold coated with bioactive materials and compare the in vitro cellular behavior of MC3T3-E1 preosteoblastic cells to titanium and zirconia disks and porous zirconia scaffolds. MATERIALS AND METHODS. Titanium and zirconia disks were prepared. A porous zirconia scaffold was fabricated with an open cell polyurethane disk foam template. The porous zirconia scaffolds were coated with ${\beta}$-TCP, HA and a compound of ${\beta}$-TCP and HA (BCP). The characteristics of the specimens were evaluated using scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDX), and x-ray diffractometry (XRD). The dissolution tests were analyzed by an inductively coupled plasma spectrometer (ICP). The osteogenic effect of MC3T3-E1 cells was assessed via cell counting and reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS. The EDX profiles showed the substrate of zirconia, which was surrounded by the Ca-P layer. In the dissolution test, dissolved $Ca^{2+}$ ions were observed in the following decreasing order; ${\beta}$-TCP > BCP > HA (P<.05). In the cellular experiments, the cell proliferation on titanium disks appeared significantly lower in comparison to the other groups after 5 days (P<.05). The zirconia scaffolds had greater values than the zirconia disks (P<.05). The mRNA level of osteocalcin was highest on the non-coated zirconia scaffolds after 7 days. CONCLUSION. Zirconia had greater osteoblast cell activity than titanium. The interconnecting pores of the zirconia scaffolds showed enhanced proliferation and cell differentiation. The activity of osteoblast was more affected by microstructure than by coating materials.

Multi-Termination Technique for the Measurement of Characteristic Impedance and Propagation Constant of Sound Absorbing Materials Using an Impedance Tube

  • Lee, Jong-Hwa;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.79-84
    • /
    • 2006
  • Acoustic characteristics of a sound absorbing material can be identified, if the characteristic impedance and propagation constants are known, which have generally been determined experimentally. One easy method determining these two essential parameters is to measure the one dimensional wave characteristics in the impedance tube. In th udy, the effects of backing conditions on the impedance tube measurement have been examined using several pairs of generally used end conditions. The results showed that the measured values are similar for most pairs of end conditions: however, it was observed that the measured characteristic impedance for different thickness did not agree well for some pairs. In this work, the multi termination method, using three or more known backing con ns, was suggested to reduce such random errors, which are mostly caused by the test procedure. Employing three terminations as a set, comprised of a rigid end, an end with porous material, and an end with a backing cavity, it was demonstrated that improved measured results could be obtained for an open cell PU foam varying widely with three different thicknesses.

Characteristics of Wall Pressure over Wall with Permeable Coating (침투성 코팅 처리된 벽면 주위의 벽 압력 특성)

  • Song, Woo-Seog;Shin, Seung-Yeol;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1055-1063
    • /
    • 2012
  • Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open-cell, urethane-type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber-frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low-frequency wall pressure spectral levels compared to a smooth wall.