• Title/Summary/Keyword: Open Reading Frame

Search Result 700, Processing Time 0.026 seconds

Cloning and Characterization of Homeodomain-Zip Gene, Phc5 in Embryogenic Callus derived from Pimpinella brachycarpa Suspension Cultured Cells (참나물 현탁배양세포 유래 배발생캘러스에서 HD-Zip 유전자, Phc5의 클로닝과 특성)

  • 손수인;김준철
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.2
    • /
    • pp.121-126
    • /
    • 1999
  • Calli were induced from the petiole explants of Pimpinella brachycarpa on MS medium supplemented with 0.5 mg/L 2,4-D and 0.1 mg/L BA after four weeks of culture. Compact clusters of small and dense cells among these calli were selected and suspension-cultured as the source of embryogenic calli. When transferred to MS medium with 0.1 mg/L NAA, the suspension-cultured cells grew to embryogenic callus. Somatic embryos derived from these embryogenic calli developed into plantlets. The cDNA library was constructed in the embryogenic callus and in order to screen the cDNA library, these cDNAs were plated at a density 1.5 $\times$ 10^5 plaques per 15 cm petridish. Among 19 clones showing preferential hybridization with petiole HD-Zip gene, five clones were obtained after second screening. Four clones among them, were highly homologous to P. brachycarpa shoot-tip Phz4 gene, but one clone, Phc5 was about 1.5 kb which has an extra 163 bp to 5' upstream of Phz4. The Phc5 was 1,531 bp containing poly A tails of 18 bases. ATG start codon for Phc5, was located at position 284 with an open reading frame of 906 by which encodes a polypeptide of 302 amino acids. The Phc5 protein revealed that the polypeptides between 135 and 195 contain a homeodomain as the `leucine zipper' motif.

  • PDF

Molecular Cloning, Sequence Analysis, and in Vitro Expression of Flavanone 3β-Hydroxylase from Gypsophila paniculata (안개초(Gyposphila paniculata)로부터 Flavanone 3β-Hydroxylase 유전자의 분리 및 분석)

  • Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • Flavanone 3$\beta$-hydroxylase (FHT) is an enzyme acting in the central part of the flavonoid biosynthesis pathway. FHT catalyses the hydroxylation of flavanone to dihydroflavonols in the anthocyanin pathway. In this paper we describe the cloning and expression of the genes encoding the flavonoid-biosynthetic enzyme FHT in Gypsophila paniculata L. A heterologous cDHA probe from Dianthus cavophyllus was used to isolate FHT-encoding cDHA clones from Gypsophila paniculata L.. Inspection of the 1471 bp long sequence revealed an open reading frame 1047 bp, including a 190 bp 5' leader region and 288 bp 3' untranslated region. Comparison of the coding region of this FHT cDHA sequence including the sequences of Arabidopsis thaliana, Citrus sinensis, Dianthus caryophyllus, Ipomoea batatas, Matthiola incana, Nierembergia sp, Petunia hybrida, Solanum tuberosum, Vitis vinifera reveals a identity higher than 69% at the nucleotide level. The function of this nucleotide sequences were verified by comparison with amino acid sequences of the amino-terminus and tryptic peptides from purified plant enzyme, by northern blotting with mRHA from wild type and mutant plants, by in vitro expression yielding and enzymatically active hydroxylase, as indicated by the small dihydrokaempferol peak. Genomic southern blot analysis showed the presence of only one gene for FHT in Gypsophila paniculata.

Sequencing of cDNA Clones Expressed in Adipose Tissues of Korean Cattle

  • Bong, J.J.;Tong, K.;Cho, K.K.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.483-489
    • /
    • 2005
  • To understand the molecular mechanisms that regulate intramuscular fat deposition and its release, cDNA clones expressed in adipose tissues of Korean cattle were identified by differential screening from adipose tissue cDNA library. By partial nucleotide sequencing of 486 clones and a search for sequence similarity in NCBI nucleotide databases, 245 clones revealed unique clones. By a functional grouping of the clones, 14% of the clones were categorized to metabolism and enzyme-related group (stearoyl CoA desaturase, lactate dehydrogenase, fatty acid synthase, ATP citrate lyase, lipoprotein lipase, acetyl CoA synthetase, etc), and 6% to signal transduction/cell cycle-related group (C/EBP, cAMP-regulated phosphoprotein, calmodulin, cyclin G1, cyclin H, etc), and 4% to cytoskeleton and extracellular matrix components (vimentin, ankyrin 2, gelosin, syntenin, talin, prefoldin 5). The obtained 245 clones will be useful to study lipid metabolism and signal transduction pathway in adipose tissues and to study obesity in human. Some clones were subjected to full-sequencing containing open reading frame. The cDNA clone of bovine homolog of human prefoldin 5 gene had a total length of 959 nucleotides coding for 139 amino acids. Comparison of the deduced amino acid sequences of bovine prefoldin 5 with those of human and mouse showed over 95% identity. The cDNA clone of bovine homolog of human ubiquitin-like/S30 ribosomal fusion protein gene had a total length of 484 nucleotides coding for 133 amino acids. Comparison of the deduced amino acid sequences of bovine ubiquitin-like/S30 ribosomal fusion protein gene with those of human, rat and mouse showed over 97% identity. The cDNA clone of bovine homolog of human proteolipid protein 2 mRNA had a total length of 928 nucleotides coding for 152 amino acids. Comparison of the deduced amino acid sequences of bovine proteolipid protein 2 with those of human and mouse showed 87.5% similarity. The cDNA clone of bovine homolog of rat thymosin beta 4 had a total length of 602 nucleotides coding for 44 amino acids. Comparison of the deduced amino acid sequences of bovine thymosin beta 4 gene with those of human, mouse and rat showed 93.1% similarity. The cDNA clone of bovine homolog of human myotrophin mRNA had a total length of 790 nucleotides coding for 118 amino acids. Comparison of the deduced amino acid sequences of bovine myotrophin gene with those of human, mouse and rat showed 83.9% similarity. The functional role of these clones in adipose tissues needs to be established.

Molecular Cloning of the cDNA of Heat Shock Protein 88 Gene from the Entomopathogenic Fungus, Paecilomyces tenuipes Jocheon-1

  • Liu, Ya-Qi;Park, Nam Sook;Kim, Yong Gyun;Kim, Keun Ki;Park, Hyun Chul;Son, Hong Joo;Hong, Chang Ho;Lee, Sang Mong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.28 no.2
    • /
    • pp.71-84
    • /
    • 2014
  • The full-length heat shock protein 88 (HSP88) complementary DNA (cDNA) of Paecilomyces tenuipes Jocheon-1 was obtained by screening the Paecilomyces tenuipes (P. tenuipes) Jocheon-1 Uni-Zap cDNA library and performing 5' RACE polymerase chain reaction (PCR). The P. tenuipes Jocheon-1 HSP88 cDNA contained an open reading frame (ORF) of 2,139-basepair encoding 713 amino acid residues. The deduced amino acid sequence of the P. tenuipe s Jocheon-1 HSP88 cDNA showed 77% identity to Nectria haematococca HSP88 and 45-76% identity to other fungal homologous HSP88s. Phylogenetic analysis and BLAST program analysis confirmed that the deduced amino acid sequences of the P. tenuipes Jocheon-1 HSP88 gene belonged to the ascomycetes group within the fungal clade. The P. tenuipes Jocheon-1 HSP88 also contained the conserved ATPase domain at the N-terminal region. The cDNA encoding P. tenuipes Jocheon-1 HSP88 was expressed as an 88 kilodalton (kDa) polypeptide in baculovirus-infected insect Sf9 cells. Under higher temperature conditions for the growth of the entomopathogenic fungus, mRNA expression of P. tenuipes Jocheon-1 HSP88 was quantified by real time PCR (qPCR). The results showed that heat shock stress induced a higher level of mRNA expression compared to normal growth conditions.

Characterization and Cloning of a Phytase from Escherichia coli WC7. (Escherichia coli WC7가 생산하는 Phytase의 효소특성과 그 유전자의 클로닝)

  • 최원찬;오병철;김형권;강선철;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Phytase from Escherichia coli WC7 was purified from cell extracts and its molecular mass was estimated to be 45 kDa by SDS-PAGE. Its optimum temperature and pH for phytate hydrolysis was 6$0^{\circ}C$ and pH 5.0, respectively. The enzyme was stable up to 6$0^{\circ}C$ and over broad pH range (pH 2-12). The enzyme had higher affinity for sodium phytate than p-nitrophenylphosphate (pNPP). That is, the apparent Km value for sodium phytate and pNPP were $0.15\pm$0.02 mM and 2.82$\pm$0.05 mM, respectively. The gene encoding the phytase was cloned in E. coli XL1-Blue. Sequence analysis showed an open reading frame of 1241 Up encoding a signal peptide (22 aa) and a mature enzyme (410 aa). WC7 phytase was expressed up to 17.5 U/ml in the transformed E. coli XL1-Blue/pUEP, which was 23-fold higher than the activity from wild strain.

A Newly Identified Glutaminase-Free L-Asparaginase (L-ASPG86) from the Marine Bacterium Mesoflavibacter zeaxanthinifaciens

  • Lee, Su-Jin;Lee, Youngdeuk;Park, Gun-Hoo;Umasuthan, Navaneethaiyer;Heo, Soo-Jin;Zoysa, Mahanama De;Jung, Won-Kyo;Lee, Dae-Won;Kim, Hanjun;Kang, Do-Hyung;Oh, Chulhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1115-1123
    • /
    • 2016
  • L-Asparaginase (E.C. 3.5.1.1) is an enzyme involved in asparagine hydrolysis and has the potential to effect leukemic cells and various other cancer cells. We identified the L-asparaginase gene (L-ASPG86) in the genus Mesoflavibacter, which consists of a 1,035 bp open reading frame encoding 344 amino acids. Following phylogenetic analysis, the deduced amino acid sequence of L-ASPG86 (L-ASPG86) was grouped as a type I asparaginase with respective homologs in Escherichia coli and Yersinia pseudotuberculosis. The L-ASPG86 gene was cloned into the pET-16b vector to express the respective protein in E. coli BL21 (DE3) cells. Recombinant L-asparaginase (r-L-ASPG86) showed optimum conditions at 37-40℃, pH 9. Moreover, r-L-ASPG86 did not exhibit glutaminase activity. In the metal ions test, its enzymatic activity was highly improved upon addition of 5 mM manganese (3.97-fold) and magnesium (3.35-fold) compared with the untreated control. The specific activity of r-L-ASPG86 was 687.1 units/mg under optimum conditions (37℃, pH 9, and 5 mM MnSO4).

Cloning and Sequencing of the pelCl Gene Encoding Pectate Lyase of Erwinia carotovora subsp. carotovora LY34 (Erwinia carotovora subsp. carotovora LY34에서 pelCI 유전자 클로닝)

  • Lim, Sun-Tech;Park, Yong-Woo;Yun, Han-Dae
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.380-387
    • /
    • 1997
  • Phytopathogenic Erwinia carotovora subsp. carotovora (Ecc) LY34 causes plant tissue maceration by secretion of pectinolytic enzymes such as pectate Iyase (PL) existed as multiple isoenzyme form. Genomic DNA from Ecc LY34 was digested with Sau3Al and ligated into the BamHI site of pBluescript ll $SK^+$. Among them, a clone hydrolyzing polypectate was selected and its DNA was digested with BamHI. Through the subsequent subcloning the resulting 3.1 kb fragment, corresponding to a peICI, was subcloned into pLYPA 100. The structural organization of a peICI gene encoding a 374 amino acid residues consists of an open reading frame (ORF) of 1,122 bp commencing with a ATG start codon and followed by a TAA stop codon. PeICI contained a typical prokaryotic signal peptide of 22-amino acid. Since the deduced amino acid sequences of PeICl protein was very similar to those of PelIII of Erwinia carotovora subsp. carotovora, and to those of Pel3 of Erwinia carotovora subsp. atroseptica, and to those of PeIC of Erwinia carotovora subsp. carotovora, it belong to the same family PLbc group. The 374-amino acld PeICI had a calculated Mr of 40,507 and pI of 7.60.

  • PDF

Nucleotide sequence analysis and expression of NSP4 gene of human rotaviruses isolated in Korea (국내에서 분리된 사람 로타바이러스의 NSP4 유전자 염기서열 분석 및 발현)

  • Jung, Dong-hyuk;Song, Yun-kyung;Kim, Kyung-mi;Park, Hyo-sun;Back, Myoung-soon;Kang, Shien-young
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.89-100
    • /
    • 2002
  • The nonstructural glycoprotein NSP4, encoded by the 10th gene of rotavirus, has been known to play important roles in viral assembly and pathogenesis. The NSP4 genes of human rotavirus Korean isolates, designated as CBNU/HR-1, CBNU/HR-2, CBNU/HR-3, and CBNU/HR-4, were cloned, sequenced and characterized. Also, the NSP4 gene of the CBNU/HR-1 was expressed in a baculovirus-insect cell system. The sequence data indicated that the NSP4 genes of human rotavirus Korean isolates were 750 or 751 bases in length and encoded one open reading frame of 175 amino acids. Two glycosylation sites were recognized in the NSP4 gene of human rotavirus isolates tested. The NSP4 of CBNU/HR-1, CBNU/HR-3, and CBNU/HR-4 exhibited a high degree of amino acid sequence homology with that of NSP4 genotype B viruses, but a low degree of amino acid sequence homology with that of NSP4 genotype A viruses. However, the NSP4 of CBNU/HR-2 exhibited a high degree of amino acid sequence homology with that of NSP4 genotype A viruses, but a low degree of amino acid sequence homology with that of NSP4 genotype B viruses. The Sf9 cells infected with recombinant baculovirus, inserted with NSP4 gene of CBNU/HR-1, produced specific cytopathic effects and the expressed NSP4 was detected by immunofluorescence staining using NSP4-specific monoclonal antibody(MAb). The expressed NSP4 migrated at 16-26 kDa on SDS-PAGE and reacted with NSP4-specific MAb by Western blotting.

Molecular Cloning and Analysis of the Genes in the Vicinity of Streptomyces griseus Trypsin (SGT) Gene from Streptomyces griseus ATCC10137 (Streptomyces griseus ATCC10137에서 Trypsin 유전자 sprT의 주변 유전자군 분석)

  • Chi Won-Jae;Kim Mi-Soon;Kim Jong-Hee;Kang Dae-Kyung;Hong Soon-Kwang
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.255-261
    • /
    • 2005
  • A 6.7kb DNA fragment containing the sprT gene encoding Streptomyces griseus trypsin (SGT) was cloned from Streptomyces griseus ATCC 10137, and the complete nucleotide sequence was determined. Nucleotide sequence and deduced amino acid or the EcoRI-HindIII fragment revealed the presence or the six complete ORFs containing the sprT gene and one incomplete ORF, which were named ORF1, SGT, ORF2, ORF3, ORF4, ORF5, and ORF6, respectively. ORF1 has homology with the oxidoreductases from several organisms. ORF2 and ORF3 show similarity with unknown proteins and transcription regulator that belongs to the ArsR family, respectively. ORF4 and ORF5 show homology with the peptidoglycan bound protein with LPXTG motif from Listeria monocytogenes and the membrane protein with transmembrane helix from several organisms, respectively. The last ORF, ORF6, shows homology with the lipoprotein from Streptomyces avermitilis.

Investigation of the Gene Encoding Isotocin and its Expression in Cinnamon Clownfish, Amphiprion melanopus (Cinnamon clownfish Amphiprion melnaopus의 이소토신 유전자 구조와 삼투압 조절이 미치는 영향)

  • Noh, Gyeong Eon;Choi, Mi-Jin;Min, Byung Hwa;Rho, Sum;Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.164-173
    • /
    • 2016
  • Isotocin (IT), a nonapeptide homolog of oxytocin in mammals, has been suggested to be involved in physiological processes including social behaviors, stress responses, and osmoregulation in teleost fish. To study its structure and function, the gene encoding the IT precursor was cloned from the genomic DNA and brain cDNA of the cinnamon clownfish, Amphiprion melanopus. The IT precursor gene consists of three exons separated by two introns, and encodes an open reading frame of 156 amino acid (aa) residues, comprising a putative signal peptide of 19 aa, a mature IT protein of 9 aa, a proteolytic processing site of 3 aa, and 125 aa of neurophysin. Tissue-specific analysis of the IT precursor transcript indicated its expression in the brain and gonads of A. melanopus. To examine its osmoregulatory effects, the salinity of the seawater (34 ppt) used for rearing A. melanopus was lowered to 15 ppt. Histological analysis of the gills indicated the apparent disappearance of an apical crypt on the surface of the gill lamella of A. melanopus, as pavement cells covered the surface upon acclimation to the lower salinity. The level of Na+/K+-ATPase activity in the gills was increased during the initial stage of acclimation, followed by a decrease to its normal level, suggesting its involvement in osmoregulation and homeostasis. The only slight increase in the level of IT precursor transcript in the A. melanopus brain upon low-salinity acclimation suggested that IT played a minor role, if any, in the process of osmoregulation.