• Title/Summary/Keyword: Oocyte enucleation

Search Result 21, Processing Time 0.02 seconds

Co-treatment with Demecolcine and BMI-1026, a Potent cdk1 Inhibitor, Induces the Enucleation of Murine Oocytes

  • Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Oocyte enucleation is essential for somatic cell nuclear transfer (SCNT) in the production of cloned animals or embryonic stem cells from adult somatic cells. Most studies of oocyte enucleation have been performed using micromanipulator-based techniques, which are technically demanding, time-consuming, and expensive. Several recent studies have used chemical-induced oocyte enucleation; however, each has been plagued by low efficiency and toxicity. In this study, I found that the co-treatment of murine oocytes with demecolcine and BMI-1026, a potent cdk1 inhibitor, resulted in a high enucleation rate (97%). This method is entirely independent of a micromanipulator and is suitable for the large-scale production of enucleated oocytes. This new method of enucleation will be useful in SCNT and in the development of handmade cloning techniques.

Polscope-Assisted Enucleation for Nuclear Transfer in Mice

  • Won Ji Young;Kang Jee Hyun;Shim Hosup
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.257-260
    • /
    • 2004
  • Efficiency of somatic cell nuclear transfer was investigated in mice. First, oocyte activation was induced by SrCl₂, and the rate of development was compared with embryos from normal fertilization. Although more than one half of SrCl₂-treated oocytes developed to blastocysts (146/262, 55.7%), the rate of blastocyst formation was significantly lower than normal fertilization controls (59/79, 74.6%). Second, enucleation of oocytes was performed using Polscope that enables non-invasive visualization of metaphase spindles. Such approach could not only avoid damage of oocytes during an exposure to UV light often employed in conventional enucleation procedures, but could also assure the removal of nuclei from all oocytes operated because of monitoring the location of spindles during an entire process of enucleation. Morphologically normal blastocysts were obtained from the transfer of cumulus cell nuclei into enucleated oocytes. However, the rate of development into the blastocyst stage was still low (4/93, 4.3%). This reflects that the nuclear transfer procedure used in this study was not sufficiently optimized, and other factors may also impact greatly the efficiency of nuclear transfer. Including an induction of oocyte activation and method of enucleation tested in this study, a lot more elements are remained to be optimized to improve the efficiency of somatic cell nuclear transfer in mice.

Development of a New Improvement and Multiplication System in Domestic Animals Using a Embryonic Manipulation Technique I. Effect of Maturation Time on the Extrusion Rate of First Polar Body and the Enucleation Rate of Bovine Follicular Oocytes (세포조작 기술을 이용한 새로운 축산개량증식 체계 개발 I. 소 난포란의 성숙시기가 제 1극체 출현율과 핵제거율에 미치는 영향)

  • 임경순;김현종;오성종;양보석
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 1995
  • In this study, methods on fabrication of microtool and setting of micromanipulator were examined and relationship between first polar body extrusion rate and maturation time of follicular oocyte, enulceation rae and repetition of trial, and enucleation rate and maturation period were investigated. The results are as follows: 1. Suitable outside diameter of micropipette tube was 1mm. Holding pipette with less than diameter of oocyte was fitred for manipulation, and zona dissection needle was easily operated when its sharp-point had diameter of about 8 ${\mu}{\textrm}{m}$ and length of 300${\mu}{\textrm}{m}$. The injection pipette with 20~35${\mu}{\textrm}{m}$ outside diameter was adequate for injection of blastomere into perivitelline space. 2. Separation of blastomere was effective when zona pellucida had cut with zonadissection needle and the embryo was pipetted gently with the pipette that had narrower diameter than that of embryo until separation of blastomeres had completed. 3. The extrusion rate of first polar body was 78% during 20~24% hours incubation for maturation. 4. According to repetitions of micromanipulation, the enucleation rate was increased to 85% and the time required for enucleation of a oocyte was shortened to 3 min. 5. The extrusion rate of first polar body and enucleation rate were 82 and 76% respectively, in the group of the oocytes cultured for 22 hours. However in the group cultured for 24 hours, the extrusion rate of first polar body and enucleation rate were 53 and 100% respectively.

  • PDF

An Improved Method to Prepare Activated Cytoplasts for Use of Nuclear Transplantation in Rabbits (활성화된 수핵란을 이용한 핵이식기법의 개선)

  • 윤희준;이효종;최상용;박충생
    • Journal of Embryo Transfer
    • /
    • v.13 no.3
    • /
    • pp.219-226
    • /
    • 1998
  • Enucleation of oocytes is an important limiting step for embryo cloning. We propose an enucleation technique based on the removal of chromatin after oocyte activation by aspirating the second polar body containing complemented chromatin. In a preliminary experiment to determine an optimal age of oocytes enucleation in rabbits, oocytes were enucleated at 15~20 hours post hCG. Recently ovulated oocytes were enucleated at a higher rate than aged oocytes. Microsurgical removal of the complemented chromatin in the second polar body was significantly more effective in enucleating than aspiration of a larger cytoplasm volume surrounding the first polar body of metaphase-arrested oocytes(96.8% versus 70.4%; P〈0.05). Moreover, compared with a nuclear transplantation protocol based on enucleation of metaphase-arrested oocytes and preactivated oocytes followed by treatment with 5 $\mu$M ionomycin for 5 min and 2 mM DMAP for 1 hr, there was no significant difference in the rate of blastocyst development. The ease with which modified technique can be performed is likely to render this technique widely useful for research and practice on mammalian cloning.

  • PDF

Localization of Cyclin B and Erk1/2 in Ovine Oocytes and MPF and MAPK Activities in Cytoplast and Karyoplast following Enucleation

  • Lee, Joon-Hee;Campbell, Keith H.S.
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.407-414
    • /
    • 2011
  • The development of embryos reconstructed by somatic cell nuclear transfer (SCNT) is dependent upon numerous factors. Central to development is the quality and developmental competence of the recipient cytoplast and the type of the donor nucleus. Typically metaphase of the second meiotic division (MII) has become the cytoplast of choice. Production of a cytoplast requires removal of the recipient genetic material, however, it may remove proteins which are essential for development or reduce the levels of cytoplasmic proteins to influence subsequent reprogramming of the donor nucleus. In this study, enucleation at MII did not affect the activities of either MPF or MAPK kinases. Immunocytochemical staining showed that both Cyclin B1 (MPF) and Erk1/2 (MAPK) were associated with the meiotic spindle of AI/TI oocytes with little staining in the cytoplasm, however, at MII association of both proteins with the spindle had reduced and a greater degree of cytoplasmic distribution was observed. The analysis of oocyte proteins removed during enucleation is a difficult approach to the identification of factors which may be depleted in the cytoplast. This is primarily due to the large numbers of aspirated karyoplasts which would be required for the analysis.

Improved Enucleation Efficiency of Pig Somatic Cell Nuclear Transfer by Early Denudation of Oocytes at 30 Hours of In Vitro Maturation

  • Song, Kil-Young;Hyun, Sang-Hwan;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.22 no.4
    • /
    • pp.235-243
    • /
    • 2007
  • Our goal was to examine the effects of early denudation on the enucleation efficiency and developmental competence of embryos following somatic cell nuclear transfer (SCNT) and parthenogenetic activation (PA). Oocytes were denuded following 30 h of in vitro maturation (IVM) and then cultured with (D+) or without (D-) their detached cumulus cells for additional $10{\sim}14$ h. Control oocytes were denuded after $40{\sim}44$ h of IVM. The size of the perivitelline space was larger at 40 h of IVM ($11.7{\sim}11.8{\mu}m$) than at 30 h ($8.9{\mu}m;$ p<0.01). The distances between the metaphase II (M II) plates and the polar bodies (PBs) were shorter in D+ ($19.4{\mu}m$) and D- oocytes ($18.9{\mu}m$) than in control oocytes ($25.5{\mu}m;$ p<0.01). Enucleation rates following blind aspiration at 40 h of IVM were higher (p<0.01) in D+ (92%) and D- oocytes (93%) compared to controls (82%). Early denudation did not affect oocyte maturation or the in vitro development of SCNT and PA embryos. When SCNT embryos from D+ oocytes were transferred to four gilts, pregnancy was established in two pigs, and one of them farrowed three live piglets. In conclusion, early denudation of oocytes at 30 h of IVM could improve the enucleation efficiency by maintaining the M II plate and the PB within close proximity and support the in vivo development of SCNT embryos to term.

Factors Affecting the Development of Embryos Produced by Nuclear Transfer

  • Lee, Joon-Hee;Campbell, Keith H.S.
    • Journal of Embryo Transfer
    • /
    • v.27 no.4
    • /
    • pp.193-203
    • /
    • 2012
  • The development of embryos reconstructed by nuclear transfer is dependent upon numerous factors including the type of recipient cell, method of enucleation, the type of donor cell, method of reconstruction, activation, the cell cycle stage of both the donor nucleus and the recipient cytoplasm and the method of culture of the reconstructed embryos. Many of these points which have been reviewed extensively elsewhere (Sun and Moor, 1995; Colman, 1999; Oback and Wells, 2002; Renard et al., 2002; Galli et al., 2003b), here we will concentrate on main area, the production of suitable cytoplast and nuclear donor, nuclear-cytoplasmic coordination, oocyte activation, culture of reconstructed embryos, and the effects that this may have on development.

Cryopreservation of Unfertilized Oocytes and Use as Recipient Oocyte for Nuclear Transplant in Rabbits (토끼에서 미수정난자의 동결보존과 핵이식을 위한 수핵난자로서의 이용에 관한 연구)

  • 김창근;김창근;황성수;정영호;손동수;이종완;이장희
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.1
    • /
    • pp.9-17
    • /
    • 1996
  • This study was conducted to investigate freezability of in vitro and in vitro matured rabbit oocytes, possibility of NT using frozen-thawed unfertilized oocytes, and NT efficiency by zona-slit micromanipulation. After freezing of in vitro matured oocytes, 33 to 49% of oocytes appeared normal morphology and 1.0M DMSO and 1.5M glycerol showed slightly high survival rate, but there was no difference in survival between two cryoprotectants. Freezability of in vitro matured oocytes was low in 1.5M glycerol and more sensitive to freezing. Efficiency of enucleation and fusion rate in method B was higher than that in method A and no difference in this efficiency was between 3 groups of oocytes in method B. Cleavage rate and developmental capacity to M+B stage of fused embryos derived from frozen oocytes was greatly lower than that from fresh oocytes, respectively(39.1% : 79.5% ; 3.1% : 19.3%) and there was no difference in cleavage rate between DC voltages in two group oocytes. Additional incubation in cytochalasin B after electrical stimulation did not affect embryo development. In conclusion, it is suggested that enucleation and nucelar transfer by slitting of zona is more effective method in rabbit and that further study on optimum freezing conditions for in vitro matured oocytes is necessary to use as recipient oocytes.

  • PDF

Effect of the Timing of Oocyte Activation on Development of Rat Somatic Cell Nuclear Transfer Embryos

  • Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.29 no.4
    • /
    • pp.229-234
    • /
    • 2005
  • Methods for activation of reconstructed oocytes were examined for the production of nuclear transfer (NT) rat embryos using fetal neural stem cells as donor. Neural stem cells were isolated from Day 14.5 rat fetuses, and the oocytes for recipient cytoplasm were recovered from 4-week old Sprague Dawley rats. After enucleation and nuclear injection, the reconstructed oocytes were immediately exposed to activation medium consisting of 10 mM $SrCl_2$ for 4 h (immediate activation after injection; IAI), or cultured in vitro for $2\~3$ h before activation treatment (injection before activation; IBA). Pre-activated oocytes were also used for NT to test reprogramming potential of artificially activated oocytes. The oocytes were grouped as IIA (immediate injection after activation) and ABI (activation $2\~3$ h before injection). Following NT, the oocytes were cultured in vitro. Development of the NT embryos was monitored at 44 and 119 h after activation. The embryos in groups IAI, mA, and IIA were cleaved to the 2-cell stage at the rates of $36.6\%\;(15/41),\;39.5\%\;(17/43)\;and\;46.3\%$ (25/54), respectively. However, in the ABI group, only one embryo ($1.8\%$, 1/55) was cleaved after activation. After in vitro culture, two NT embryos from IAI group had developed to the morula stage $(4.9\%\cdot2/41)$. However, no morula or blastocyst was obtained in the other groups. These results suggest that immediate activation after injection (IAI) method may be used for the production of rat somatic cell NT embryos.

STUDIES ON PRODUCTION AND EFFICIENT UTILIZATION OF LIVESTOCK EMBRYOS BY IN VITRO FERTILIZATION AND MICROMANIPULATION IV. NUCLEAR TRANSPLANTATION AND ELECTROFUSION FOR CLONING IN BOVINE FOLLICULAR OOCYTES

  • Chung, Y.C.;Kim, C.K.;Song, X.X.;Yoon, J.T.;Choi, S.H.;Chung, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.6
    • /
    • pp.641-645
    • /
    • 1995
  • This study was conducted to develop a method for production of nuclear transplant bovine embryos using in vitro-matured (IVM) oocytes and to examine the effect of different conditions of electrofusion on fusion rate and developmental capacity of donor nucleus transplanted to enucleated oocytes. Eight- to sixteen-cell embryos derived from oocytes matured and fertilized in vitro used as donor blastomeres and IVM oocytes were used as recipient oocytes. Oocytes were enucleated immediately after 23-24 h IVM and then reconstituted with a donor blastomere in two different micromanipulation media. Fusion rate and subsequent development of the reconstituted oocytes was compared under the different electric stimuli and recipient oocyte ages. Success rate of enucleation was significantly higher in TCM-199 medium containing FCS than in DPBS. The high fusion rate(75-94%) and development (6.4-14.8%) to morulae and blastocyst (M + B) were obtained from 0.6-0.75 kV/cm DC voltage, although total cleavage was not different among the electric pulses. Most optimal condition of electric stimulation for fusion and development was 1 DC voltage of 0.75 kV/cm, in which 80.5% of oocytes were fused, 80.0% and 31.7% of which was cleaved and developed to M + B, respectively. No M + B was obtained from 1.2 kV/cm DC voltage regardless of pulse frequency. Recipint oocyte age at electrofusion greatly affected the cleavage and subsequent development to M + B, showing high rate at 40-41 h oocyte maturation. These results suggest that a suitable condition of electrofusion for donor nuclei derived from IVF may be 1-2 DC pulses of 0.7 kV/cm for $70{\mu}sec$ and that processing of a transplanted nucleus in IVM oocytes may be affected by maturation age of recipient oocytes.