• Title/Summary/Keyword: Oocyte

Search Result 1,256, Processing Time 0.03 seconds

Ultrastructure of the Follicular Oocyte Surface in Rana dybowskii

  • Ju, Jung-Won;Im, Wook-Bin;Kwon, Hyuk Bang;Choi, Hueng-Sik
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.45-50
    • /
    • 2001
  • Rana ovarian follicles consist of oocyte, vitelline envelope, granulosa cells, and theca/epithelial layer. Using scanning electron microscopy, the surface structure of each follicular component was investigated. Changes in oocyte surface during oocyte maturation were also examined. Theca/epithelial layer was almost transparent and some blood vessels and granulosa cells were observed underneath in intact follicle. The number of granulosa cells was estimated to be 6700-7200 per oocyte. The granulosa cells partially overlapped each other and their microvilli penetrated the vitelline membrane via holes present in the vitelline envelope and seemed to be linked to oocyte microvilli. After removal of the vitelline envelope by microforcep, oocyte microvilli were observed on the surface of the devitellined oocyte. The oocyte microvilli formed partial clusters on the surface of white spot area which appears iust before germinal vesicle breakdown (GVBD), whereas they were evenly distributed in other areas. The microvilli became shorter and less dense with oocyte maturation. The lengths of oocyte microvilli in the immature and mature oocyte were 1.5 $\mu$m and 0.6 $\mu$m, respectively. The present study suggests a fundamental structural change occurring on the oocyte surface during maturation.

  • PDF

Metabolism of Calcium in the Oocyte Maturation of Rat (흰쥐의 난자성숙에 있어서의 칼슘의 대사)

  • Hong, Soon-Gab;Lee, Joon-Yeong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.357-366
    • /
    • 1996
  • The present experiments aimed to investigate the metabolism of calcium during oocyte maturation in rat. The concentration of free calcium and calmodulin in oocytes was measured respectively by using of fluo-3/AM and FITC with microscope fluorescence spectrometer. The ultrastructural localization of calcium precipitates in oocytes was observed with the transmission electron microscope. Cumulus-free immature oocytes(GV-oocyte) were cultured in vitro through 15 hours. The free calcium concentration in GV oocyte was $55.9{\pm}3.5nM$. In calcium-containing medium, the free calcium concentration was increased in germinal vesicle breakdown(GVBD) oocyte($64.2{\pm}7.3nM$). In normal medium after calcium chelator treatment ($10{\mu}M$ BAPTA/AM), the free calcium contents were slightly lower than those in control group. In calcium-free medium, the free calcium content was drastically increased in GVBD($72.7{\pm}3.4nM$) and metaphase I - anaphase I ($88.0{\pm}3.4nM$) oocyte. In maturation rate of oocytes, GVBD rate was high in control group($82.9{\pm}6.55%$) and calcium chelator treatment group($91.2{\pm}4.4%$), but in calcium-free medium group, it was low and then the oocyte was degenerated without polar body formation. Relative content of calmodulin in oocyte was significantly(P<0.001) increased in metaphase I - anaphase I than in GV and GVBD oocyte. The calcium precipitates were observed in mitochondria and cytoplasm of GV oocyte but that were not observed in mitochondria of GVBD and metaphase I - anaphase I oocyte. And then the calcium precipitates reappeared in mitochondria of metaphase II oocyte. The above results indicate that changes in free calcium and calmodulin concentration of oocyte occur according to the maturational stages and the extracellular calcium is required during oocyte maturation. Also change of calcium localization in oocyte occurs according to the maturational stages.

  • PDF

Oocyte Degeneration Associated with Follicle Cells in Female Mactra chinensis (Bivalvia: Mactridae)

  • Kim, Sung Han;Chung, Ee-Yung;Lee, Ki-Young
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.321-327
    • /
    • 2014
  • Ultrastructural studies of oocyte degeneration in the oocyte, and the functions of follicle cells during oocyte degeneration are described to clarify the reproductive mechanism on oocyte degeneration of Mactra chinensis using cytological methods. Commonly, the follicle cells are attached to the oocyte. Follicle cells play an important role in oocyte degeneration. In particular, the functions of follicle cells during oocyte degeneration are associated with phagocytosis and the intracellular digestion of products. In this study, morphologically similar degenerated phagosomes (various lysosomes), which were observed in the degenerated oocytes, appeared in the follicle cells. After the spawning of the oocytes, the follicle cells were involved in oocyte degeneration through phagocytosis by phagolysosomes. Therefore, it can be assumed that follicle cells reabsorb phagosomes from degenerated oocytes. In this study, the presence of lipid granules, which occurred from degenerating yolk granules, gradually increased in degenerating oocytes. The function of follicle cells can accumulate reserves of lipid granules and glycogen in the cytoplasm, which can be employed by the vitellogenic oocyte. Based on observations of follicle cells attached to degenerating oocytes after spawning, the follicle cells of this species are involved in the lysosomal induction of oocyte degeneration for the reabsorption of phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves.

Changes of Morphology and Morphometric Characteristics of the Oocyte during Oogenesis of the Abalone Haliotis discus hannai (북방전복 Haliotis discus hannai 난자형성과정 동안 난모세포의 형태 및 계측형질 변화)

  • Ju, Sun Mi;Lee, Jung Sick
    • The Korean Journal of Malacology
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • The developmental stage of germ cells during oogenesis can be categorized into six stages with histological features: (1) oogonium, (2) previtellogenic oocyte, (3) initial vitellogenic oocyte, (4) early active vitellogenic oocyte, (5) late active vitellogenic oocyte and (6) ripe oocyte. The size of oocyte, nucleus and nucleolus illustrated the increase tendency but size ratio of nucleolus to nucleus was decreased during oogenesis. During oogenesis the stainability in the cytoplasm of oocyte changes from basophilic to eosinophilic in H-E stain. And egg stalk and outer jelly membrane was developed in the oocyte. These histological changes are seemed to be yolk accumulation in the oocyte and preparation process for spawning.

A Study on the Decondensation and Pronucleus Formation of Sperm Nucleus in the Mouse Oocyte

  • Kang, Hee-Gyoo;Kim, Tai-Jeon;Bae, Hyung-Joon;Moon, Hi-Joo;Lee, Ho-Joon;Yang, Hye-Young;Kim, Moon-Kyoo
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.173-179
    • /
    • 2001
  • To investigate the ability to decondense sperm head penetrated into cytoplasm of the oocytes and the relationship between this ability and the level of glutatione (GSH) in mouse oocyte at various maturing stages. The fertilizability of oocytes at various stages of maturation the decondensation of sperm nucleus and the formation of male pronucleus, were observed and the levels of GSH were measured in oocyte at same stages. Besides, the relation between fertilizability and level of GSH in oocyte cytoplasm treated with L-buthionine-S, R-sulfoxmine (L-BSO), the inbitor of biosynthesis of GSH, was determined. The decondensation of sperm head was not found in GV stage and L-BSO treated oocytes. In maturing oocytes (GVBD, MI), the decondensation was found, but the formation of male pronucleus was not. The levels of GSH in oocyte cytoplasm were measured; 2.2 pmol per oocyte in the ovulated and the matured in vitro each, 1.0 pmol in GV intact oocyte, 1.3 pmol in GVBD, and 1.5 pmol in MI phase oocyte. In L-BSO treated oocytes the levels of CSH were measured 0.08~o.09 pmol per oocyte, slightly lower than GV stage oocyte. In conclusion, GSH in oocyte is supposed to be synthesized and storaged in cytoplasm during maturation. The failure of decondensation in the cytoplasm of GV stage and L-BSO treated is suggested that GSH is an essential factor in decondensing the sperm head and that the a certain level of GSH, more than in GV oocyte cytoplasm, is required in decondensation.

  • PDF

Ultrastructural Study on the Oocyte Maturation of Swordtail (Xiphophorus hellerii) (송사리과 Swordtail (Xiphophorus hellerii)의 난모세포 성숙과정에 관한 미세구조 연구)

  • Hwang, Woo-Sub;Kim, Wan-Jong;Reu, Dong-Suck
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.263-271
    • /
    • 1998
  • Oocyte maturation of the swordtail (Kiphophorus hellerii) was investigated by light and electron microscopy. In the ovary of the swordtail, various staged oocytes were observed, Mature oocytes were located in ovarian cortex, meanwhile immature ones were positioned in ovarian medulla. The oocyte was surrounded by several structures or cells such as chorion, follicle cells, follicular theaca and ovarian epithelium, respectively, from the inside toward outside. Growing and maturing oocytes healed numerous microvilli which interconnected the oocyte and the follicle cells to communicate each other. The mature oocyte had the electron dense chorion which appeared to be ultrastructure of two layers and contained pore canals. Oocyte maturation was characterized by not only the enlarged cell size and well differentiated cell organelles, brit also the increases of fat droplets, pinocytotic vesicles and yolk granules.

  • PDF

The Making of a Competent Oocyte - A Review of Oocyte Development and Its Regulation

  • Tukur, Hammed A.;Aljumaah, Riyadh S.;Swelum, Ayman Abdel-Aziz;Alowaimer, Abdullah N.;Saadeldin, Islam M.
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.2-11
    • /
    • 2020
  • Assisted reproductive technologies (ART) merely depend on improving the oocyte maturation and their developmental competence to produce good quality embryos. Oocyte maturation passes through long and complex molecular steps starts from the early embryonic life and ends with sperm fertilization. Oocyte developmental competence can be attained by improving the nuclear and cytoplasmic mechanisms together with some epigenetic maturation. In this review, we highlight the cornerstones of oocyte maturation on both nuclear and cytoplasmic levels. Interfering or supporting these molecular mechanisms would help in the development of novel regulating agents for reproductive performance of humans and livestock species.

The role of sonic hedgehog signaling pathway in in vitro oocyte maturation

  • Lee, Sanghoon;Cho, Jongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • In vitro maturation (IVM) of oocytes is the procedure where the immature oocytes are cultivated in a laboratory until they are mature. Since IVM oocytes generally have low developmental competence as compared to those matured in vivo, development of an optimal IVM culture system by fine-tuning culture conditions is crucial to maintain high quality. In-depth knowledge and a deep understanding of the in vivo physiology of oocyte maturation are pre-requisites to accomplish this. Within ovarian follicles, various signaling pathways that drive oocyte development and maturation regulate interaction between oocytes and surrounding somatic cells. This review discusses the sonic hedgehog (SHH) signaling pathway, which has been demonstrated to be intimately involved in folliculogenesis and oocyte maturation. Advances in elucidating the role of the SHH signaling pathway in oocyte maturation will aid attempts to improve the current inferior in vitro oocyte maturation system.

Effect of Follicle Size in Jeju Mare on Oocytes Matured in vitro (제주말에서 난포 크기에 따른 난포란의 체외성숙)

  • Yoo, Jae-Gyu;Kang, Tae-Young
    • Journal of Veterinary Clinics
    • /
    • v.27 no.1
    • /
    • pp.46-49
    • /
    • 2010
  • In this study, we investigated the number of follicles, oocyte recovery rate and oocyte competence after in vitro maturation according to the size of follicle. And equine oocyte competence after in vitro maturation was investigated in terms of the diameter of follicle with criteria of maturation: nuclear stage after Hoechst staining. The average number of follicles per ovary with middle size (11-20 mm, 2.68) was higher than those of small (5-10 mm, 0.74) and large size follicle (> 21 mm, 1.63), therefore medium follicle (53.1%) had higher proportion than other size of follicles. The average numbers of follicle per ovary was 5.05. The rate of oocyte recovery in small (54.5%) and middle follicle (50%) was higher than that in large follicle (40.9%). After culture for 48 h in Medium 199, 50%, 45.5%, and 44.4% of oocytes from the follicles with diameters of 5-10, 11-20, > 21 mm, respectively reached the metaphase II stage. This is the first report showing number of follicle, oocyte recovery rate according to follicular size, and in vitro oocyte maturation in Jeju mare in Korea. To fulfill in vitro equine embryo production, further studies such as the seasonal effect, in vitro fertilization etc is need.

Effect of Follicle Size and Oocyte Type on In Vitro Maturation of Porcine Follicular Oocytes (난포의 크기 및 난포란의 형태가 돼지 난포란의 체외성숙에 미치는 영향)

  • 박병권;박영석;이미영;이성호;김덕환;이종완;권건오;김인봉;김형태
    • Journal of Embryo Transfer
    • /
    • v.14 no.3
    • /
    • pp.177-184
    • /
    • 1999
  • This study was conducted to find out the effect of follicle size and oocyte type on in vitro maturation of poricine follicular oocytes. TCM-HEPEAS medium was used to basic medium, and the oocyte matured in vitro was stained with the Rapid staining method. The results obtained were summarized as follows; 1. The number of follicles an ovary was 20.5. The number of A-and B-typed oocytes an ovary was 2.34. The proportion of A-and b-types oocytes was 40% of the recovery oocytes. 2. Cumulus expanison indexes(CEI) by the follicle size were 1.62∼2.34(<2mm), 1.27∼2.28(2∼5mm) and 1.46∼2.75(>5mm). It was no differ to maturation rate by the follicle size. 3. The degree of oocyte maturation based on oocyte type did not differ for B-and C-typed oocyted but the index of oocyte type A was higher than that of b-and C-typed oocytes. 4. When follicluar oocytes were cultured for 42 hours, the proportion of the Met-II(second metaphase) stage were 22.5% (degree 1), 35.4%(degree 2) and 65.5% (degree 3).

  • PDF