Browse > Article
http://dx.doi.org/10.12750/JARB.35.1.2

The Making of a Competent Oocyte - A Review of Oocyte Development and Its Regulation  

Tukur, Hammed A. (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University)
Aljumaah, Riyadh S. (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University)
Swelum, Ayman Abdel-Aziz (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University)
Alowaimer, Abdullah N. (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University)
Saadeldin, Islam M. (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University)
Publication Information
Journal of Animal Reproduction and Biotechnology / v.35, no.1, 2020 , pp. 2-11 More about this Journal
Abstract
Assisted reproductive technologies (ART) merely depend on improving the oocyte maturation and their developmental competence to produce good quality embryos. Oocyte maturation passes through long and complex molecular steps starts from the early embryonic life and ends with sperm fertilization. Oocyte developmental competence can be attained by improving the nuclear and cytoplasmic mechanisms together with some epigenetic maturation. In this review, we highlight the cornerstones of oocyte maturation on both nuclear and cytoplasmic levels. Interfering or supporting these molecular mechanisms would help in the development of novel regulating agents for reproductive performance of humans and livestock species.
Keywords
cytoskeleton; development; maturation; meiotic arrest; oocyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Britt JH. 2008. Oocyte development in cattle: physiological and genetic aspects. R. Bras. Zootec. 37:110-115.   DOI
2 Brook M and Gray NK. 2012. The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochem. Soc. Trans. 40:856-864.   DOI
3 Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. 2018. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J. Reprod. Dev. 64:385-392.   DOI
4 Ajduk A, Malagocki A, Maleszewski M. 2008. Cytoplasmic maturation of mammalian oocytes: development of a mechanism responsible for sperm-induced Ca2+ oscillations. Reprod. Biol. 8:3-22.   DOI
5 Takagi Y, Talbot NC, Rexroad CE Jr, Pursel VG. 1997. Identification of pig primordial germ cells by immunocytochemistry and lectin binding. Mol. Reprod. Dev. 46:567-580.   DOI
6 Tang LS, Wang Q, Xiong B, Hou Y, Zhang YZ, Sun QY, Wang SY. 2007. Dynamic changes in histone acetylation during sheep oocyte maturation. J. Reprod. Dev. 53:555-561.   DOI
7 Taweechaipaisankul A, Jin JX, Lee S, Kim GA, Suh YH, Ahn MS, Park SJ, Lee BY, Lee BC. 2019. Improved early development of porcine cloned embryos by treatment with quisinostat, a potent histone deacetylase inhibitor. J. Reprod. Dev. 65:103-112.   DOI
8 Terenzio M, Koley S, Samra N, Rishal I, Zhao Q, Sahoo PK, Urisman A, Marvaldi L, Oses-Prieto JA, Forester C, Gomes C, Kalinski AL, Di Pizio A, Doron-Mandel E, Perry RB, Koppel I, Twiss JL, Burlingame AL, Fainzilber M. 2018. Locally translated mTOR controls axonal local translation in nerve injury. Science 359:1416-1421.   DOI
9 Tetkova A, Jansova D, Susor A. 2019. Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci. Rep. 9:13121.   DOI
10 Mao L, Lou H, Lou Y, Wang N, Jin F. 2014. Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod. Biomed. Online. 28:284-299.   DOI
11 Marlow F. 2015. Primordial germ cell specification and migration. F1000Res. 4:F1000 Faculty Rev-1462.
12 Masui Y and Markert CL. 1971. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177:129-145.   DOI
13 Matoba S, O'Hara L, Carter F, Kelly AK, Fair T, Rizos D, Lonergan P. 2012. The association between metabolic parameters and oocyte quality early and late postpartum in Holstein dairy cows. J. Dairy Sci. 95:1257-1266.   DOI
14 McNatty KP, Smith P, Hudson NL, Heath DA, Tisdall DJ, O WS, Braw-Tal R. 2019. Development of the sheep ovary during fetal and early neonatal life and the effect of fecundity genes. J. Reprod. Fertil. Suppl. 49:123-135.
15 Conti M, Hsieh M, Zamah AM, Oh JS. 2012. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol. Cell. Endocrinol. 356:65-73.   DOI
16 Babayev E and Seli E. 2015. Oocyte mitochondrial function and reproduction. Curr. Opin. Obstet. Gynecol. 27:175-181.   DOI
17 Comizzoli P, Paulson EE, McGinnis LK. 2018. The mutual benefits of research in wild animal species and human-assisted reproduction. J. Assist. Reprod. Genet. 35:551-560.   DOI
18 Conti M and Franciosi F. 2018. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum. Reprod. Update 24:245-266.   DOI
19 Oh HI, Lee SH, Lee S, Lee ST, Lee E, Park CK. 2015. Role of Golgi apparatus on regulation of $Sec61{\beta}$, COPG2 and epidermal growth factor during oocyte maturation. Reprod. Dev. Biol. 39:37-41.   DOI
20 Moncrieff L, Mozdziak P, Jeseta M, Machatkova M, Kranc W, Kempisty B. 2019. Ovarian follicular cells - living in the shadow of stemness cellular competence. Med. J. Cell Biol. 7:134-140.   DOI
21 Pan B and Li J. 2019. The art of oocyte meiotic arrest regulation. Reprod. Biol. Endocrinol. 17:8.   DOI
22 Paulini F, Silva RC, Rolo JL, Lucci CM. 2014. Ultrastructural changes in oocytes during folliculogenesis in domestic mammals. J. Ovarian Res. 7:102.   DOI
23 Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. 2008. A combinatorial code for CPE-mediated translational control. Cell 132:434-448.   DOI
24 Xu M, Qian J, Si L, Qu X, Li J. 2019. The effect of epigenetic changes on the extrusion of the first polar body in pig oocytes during in vitro maturation. Cell. Reprogram. 21:129-140.   DOI
25 Viveiros MM and Fuente RDL. 2019. Regulation of mammalian oocyte maturation. In: Leung PCK and Adashi EY (Eds.), The Ovary. Academic Press, London, pp. 165-180.
26 von Baer KE and O'Malley CD. 1956. On the genesis of the ovum of mammals and of man. Isis 47:117-153.   DOI
27 Wang Q, Wang CM, Ai JS, Xiong B, Yin S, Hou Y, Chen DY, Schatten H, Sun QY. 2006. Histone phosphorylation and pericentromeric histone modifications in oocyte meiosis. Cell cycle 5:1974-1982.   DOI
28 Wang QL, Zhao MH, Jin YX, Kim NH, Cui XS. 2013. Gonadotropins improve porcine oocyte maturation and embryo development through regulation of maternal gene expression. J. Emb. Trans. 28:361-371.   DOI
29 Watson AJ. 2007. Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J. Anim. Sci. 85(13 Suppl):E1-E3.   DOI
30 Yang J, Zhang Y, Xu X, Li J, Yuan F, Bo S, Qiao J, Xia G, Su Y, Zhang M. 2019. Transforming growth factor-${\beta}$ is involved in maintaining oocyte meiotic arrest by promoting natriuretic peptide type C expression in mouse granulosa cells. Cell Death Dis. 10:558.   DOI
31 Young JM and McNeilly AS. 2010. Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489-504.   DOI
32 Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10:68.   DOI
33 Racedo SE, Wrenzycki C, Lepikhov K, Salamone D, Walter J, Niemann H. 2009. Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation. Reprod. Fertil. Dev. 21:738-748.   DOI
34 Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ, Thompson JG. 2016. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 152:R143-R157.   DOI
35 Pirino G, Wescott MP, Donovan PJ. 2009. Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle 8:665-670.   DOI
36 Poirier M, Tesfaye D, Hailay T, Salilew-Wondim D, Gebremedhn S, Rings F, Neuhoff C, Schellander K, Hoelker M. 2020. Metabolism-associated genome-wide epigenetic changes in bovine oocytes during early lactation. Sci. Rep. 10:2345.   DOI
37 Pryce JE, Royal MD, Garnsworthy PC, Mao IL. 2004. Fertility in the high-producing dairy cow. Livest. Prod. Sci. 86:125-135.   DOI
38 Franco MM, Fagundes NS, Michalczechen-Lacerda VA, Caixeta ES, de Castro Rodrigues F, Machado GM, Ferreira AR, Dode MA. 2013. Characterisation of the methylation pattern in the intragenic CpG island of the IGF2 gene in Bos taurus indicus cumulus cells during in vitro maturation. J. Assist. Reprod. Genet. 31:115-120.   DOI
39 Gahurova L, Tomizawa SI, Smallwood SA, Stewart-Morgan KR, Saadeh H, Kim J, Andrews SR, Chen T, Kelsey G. 2017. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenetics Chromatin 10:25.   DOI
40 Gu L, Wang Q, Sun QY. 2010. Histone modifications during mammalian oocyte maturation: dynamics, regulation and functions. Cell Cycle 9:1942-1950.   DOI
41 Hanna CW, Demond H, Kelsey G. 2018. Epigenetic regulation in development: is the mouse a good model for the human? Hum. Reprod. Update 24:556-576.   DOI
42 Harvey AJ. 2019. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 157:R159-R179.   DOI
43 Egbert JR, Shuhaibar LC, Edmund AB, Van Helden DA, Robinson JW, Uliasz TF, Baena V, Geerts A, Wunder F, Potter LR, Jaffe LA. 2014. Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development 141:3594-3604.   DOI
44 Cotterill M, Harris SE, Collado Fernandez E, Lu J, Huntriss JD, Campbell BK, Picton HM. 2013. The activity and copy number of mitochondrial DNA in ovine oocytes throughout oogenesis in vivo and during oocyte maturation in vitro. Mol. Hum. Reprod. 19:444-450.   DOI
45 Cui J, Sartain CV, Pleiss JA, Wolfner MF. 2013. Cytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila. Dev. Biol. 383:121-131.   DOI
46 De La Fuente R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM, Eppig JJ. 2004. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev. Biol. 275:447-458.   DOI
47 Downs KM. 2018. Extragonadal primordial germ cells or placental progenitor cells? Reprod. Biomed. Online 36:6-11.   DOI
48 Edson MA, Nagaraja AK, Matzuk MM. 2009. The mammalian ovary from genesis to revelation. Endocr. Rev. 30:624-712.   DOI
49 Eichhorn SW, Subtelny AO, Kronja I, Kwasnieski JC, Orr-Weaver TL, Bartel DP. 2016. mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos. Elife 5:e16955.   DOI
50 Elahi F, Shin H, Lee J, Lee E. 2017. Endoplasmic stress inhibition during oocyte maturation improves preimplantation development of cloned pig embryos. J. Emb. Trans. 32:287-295.   DOI
51 Endo T, Naito K, Aoki F, Kume S, Tojo H. 2005. Changes in histone modifications during in vitro maturation of porcine oocytes. Mol. Reprod. Dev. 71:123-128.   DOI
52 Robert A, Hookway C, Gelfand VI. 2016. Intermediate filament dynamics: What we can see now and why it matters. Bioessays 38:232-243.   DOI
53 Reader KL, Stanton JL, Juengel JL. 2017. The role of oocyte organelles in determining developmental competence. Biology (Basel) 6:E35.
54 Reyes JM and Ross PJ. 2016. Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdiscip. Rev. RNA 7:71-89.   DOI
55 Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. 2018. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocr. Rev. 39:1-20.   DOI
56 Roeles J and Tsiavaliaris G. 2019. Actin-microtubule interplay coordinates spindle assembly in human oocytes. Nat. Commun. 10:4651.   DOI
57 Saadeldin IM, Elsayed A, Kim SJ, Moon JH, Lee BC. 2015. A spatial model showing differences between juxtacrine and paracrine mutual oocyte-granulosa cells interactions. Indian J. Exp. Biol. 53:75-81.
58 Saadeldin IM, Koo OJ, Kang JT, Kwon DK, Park SJ, Kim SJ, Moon JH, Oh HJ, Jang G, Lee BC. 2012. Paradoxical effects of kisspeptin: it enhances oocyte in vitro maturation but has an adverse impact on hatched blastocysts during in vitro culture. Reprod. Fertil. Dev. 24:656-668.   DOI
59 Sendzikaite G and Kelsey G. 2019. The role and mechanisms of DNA methylation in the oocyte. Essays Biochem. 63:691-705.   DOI
60 Herrick JR. 2019. Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 100:1158-1170.   DOI
61 Ivshina M, Lasko P, Richter JD. 2014. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol. 30:393-415.   DOI
62 Sha QQ, Dai XX, Dang Y, Tang F, Liu J, Zhang YL, Fan HY. 2017. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development 144:452-463.   DOI
63 Sheets MD, Fox CA, Dowdle ME, Blaser SI, Chung A, Park S. 2017. Controlling the messenger: regulated translation of maternal mRNAs in Xenopus laevis development. Adv. Exp. Med. Biol. 953:49-82.   DOI
64 Hummitzsch K, Hatzirodos N, Irving-Rodgers HF, Hartanti MD, Perry VEA, Anderson RA, Rodgers RJ. 2019. Morphometric analyses and gene expression related to germ cells, gonadal ridge epithelial-like cells and granulosa cells during development of the bovine fetal ovary. PLoS One 14:e0214130.   DOI
65 Hummitzsch K, Irving-Rodgers HF, Hatzirodos N, Bonner W, Sabatier L, Reinhardt DP, Sado Y, Ninomiya Y, Wilhelm D, Rodgers RJ. 2013. A new model of development of the mammalian ovary and follicles. PLoS ONE 8:e55578.   DOI
66 Hyttel P, Pessoa LVdeF, Secher JBM, Dittlau KS, Freude K, Hall VJ, Fair T, Assey RJ, Laurincik J, Callesen H, Greve T, Stroebech LB. 2019. Oocytes, embryos and pluripotent stem cells from a biomedical perspective. Anim. Reprod. 16:508-523.   DOI
67 Jeseta M, Petr J, Krejcova T, Chmelikova E, Jilek F. 2008. In vitro ageing of pig oocytes: effects of the histone deacetylase inhibitor trichostatin A. Zygote 16:145-152.   DOI
68 Jin YX, Zhao MH, Zheng Z, Kwon JS, Lee SK, Cui XS, Kim NH. 2014. Histone deacetylase inhibitor trichostatin A affects porcine oocyte maturation in vitro. Reprod. Fertil. Dev. 26: 806-816.   DOI
69 Jones ASK and Shikanov A. 2019. Follicle development as an orchestrated signaling network in a 3D organoid. J. Biol. Eng. 13:2.   DOI
70 Solc P, Schultz RM, Motlik J. 2010. Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol. Hum. Reprod. 16:654-664.   DOI
71 Sorensen RA and Wassarman PM. 1976. Relationship between growth and meiotic maturation of the mouse oocyte. Dev. Biol. 50:531-536.   DOI
72 Stelzer Y, Shivalila CS, Soldner F, Markoulaki S, Jaenisch R. 2015. Tracing dynamic changes of DNA methylation at single-cell resolution. Cell 163:218-229.   DOI
73 Stewart KR, Veselovska L, Kelsey G. 2016. Establishment and functions of DNA methylation in the germline. Epigenomics 8:1399-1413.   DOI
74 Stewart KR, Veselovska L, Kim J, Huang J, Saadeh H, Tomizawa S, Smallwood SA, Chen T, Kelsey G. 2015. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev. 29:2449-2462.   DOI
75 Li J, Zhou W, Wang Y, Niu C. 2018. The dual role of cGMP in oocyte maturation of zebrafish. Biochem. Biophys. Res. Commun. 499:998-1003.   DOI
76 Sun QY and Schatten H. 2006. Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 131:193-205.   DOI
77 Kim J, Singh AK, Takata Y, Lin K, Shen J, Lu Y, Kerenyi MA, Orkin SH, Chen T. 2015. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice. Nat. Commun. 6:10116.   DOI
78 Kuge H and Inoue A. 1992. Maturation of Xenopus laevis oocyte by progesterone requires poly(A) tail elongation of mRNA. Exp. Cell. Res. 202:52-58.   DOI
79 Maddox AS, Azoury J, Dumont J. 2012. Polar body cytokinesis. Cytoskeleton (Hoboken) 69:855-868.   DOI
80 Eppig JJ. 1996. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod. Fertil. Dev. 8:485-489.   DOI
81 Fan HY and Sun QY. 2019. Oocyte Meiotic Maturation. In: Leung PCK and Adashi EY (Eds.), The Ovary. Academic Press, London, pp. 181-203.
82 Ferreira EM, Vireque AA, Adona PR, Meirelles FV, Ferriani RA, Navarro PA. 2009. Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71:836-848.   DOI
83 Forde N, Beltman ME, Lonergan P, Diskin M, Roche JF, Crowe MA. 2011. Oestrous cycles in Bos taurus cattle. Anim. Reprod. Sci. 124:163-169.   DOI
84 Franciosi F, Lodde V, Goudet G, Duchamp G, Deleuze S, Douet C, Tessaro I, Luciano AM. 2012. Changes in histone H4 acetylation during in vivo versus in vitro maturation of equine oocytes. Mol. Hum. Reprod. 18:243-252.   DOI
85 Branco MR, King M, Perez-Garcia V, Bogutz AB, Caley M, Fineberg E, Lefebvre L, Cook SJ, Dean W, Hemberger M, Reik W. 2016. Maternal DNA methylation regulates early trophoblast development. Dev. Cell 36:152-163.   DOI