• Title/Summary/Keyword: Ontology-Based Knowledge Map

Search Result 28, Processing Time 0.035 seconds

Ontology-Based Process-Oriented Knowledge Map Enabling Referential Navigation between Knowledge (지식 간 상호참조적 네비게이션이 가능한 온톨로지 기반 프로세스 중심 지식지도)

  • Yoo, Kee-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.61-83
    • /
    • 2012
  • A knowledge map describes the network of related knowledge into the form of a diagram, and therefore underpins the structure of knowledge categorizing and archiving by defining the relationship of the referential navigation between knowledge. The referential navigation between knowledge means the relationship of cross-referencing exhibited when a piece of knowledge is utilized by a user. To understand the contents of the knowledge, a user usually requires additionally information or knowledge related with each other in the relation of cause and effect. This relation can be expanded as the effective connection between knowledge increases, and finally forms the network of knowledge. A network display of knowledge using nodes and links to arrange and to represent the relationship between concepts can provide a more complex knowledge structure than a hierarchical display. Moreover, it can facilitate a user to infer through the links shown on the network. For this reason, building a knowledge map based on the ontology technology has been emphasized to formally as well as objectively describe the knowledge and its relationships. As the necessity to build a knowledge map based on the structure of the ontology has been emphasized, not a few researches have been proposed to fulfill the needs. However, most of those researches to apply the ontology to build the knowledge map just focused on formally expressing knowledge and its relationships with other knowledge to promote the possibility of knowledge reuse. Although many types of knowledge maps based on the structure of the ontology were proposed, no researches have tried to design and implement the referential navigation-enabled knowledge map. This paper addresses a methodology to build the ontology-based knowledge map enabling the referential navigation between knowledge. The ontology-based knowledge map resulted from the proposed methodology can not only express the referential navigation between knowledge but also infer additional relationships among knowledge based on the referential relationships. The most highlighted benefits that can be delivered by applying the ontology technology to the knowledge map include; formal expression about knowledge and its relationships with others, automatic identification of the knowledge network based on the function of self-inference on the referential relationships, and automatic expansion of the knowledge-base designed to categorize and store knowledge according to the network between knowledge. To enable the referential navigation between knowledge included in the knowledge map, and therefore to form the knowledge map in the format of a network, the ontology must describe knowledge according to the relation with the process and task. A process is composed of component tasks, while a task is activated after any required knowledge is inputted. Since the relation of cause and effect between knowledge can be inherently determined by the sequence of tasks, the referential relationship between knowledge can be circuitously implemented if the knowledge is modeled to be one of input or output of each task. To describe the knowledge with respect to related process and task, the Protege-OWL, an editor that enables users to build ontologies for the Semantic Web, is used. An OWL ontology-based knowledge map includes descriptions of classes (process, task, and knowledge), properties (relationships between process and task, task and knowledge), and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. Therefore a knowledge network can be automatically formulated based on the defined relationships, and the referential navigation between knowledge is enabled. To verify the validity of the proposed concepts, two real business process-oriented knowledge maps are exemplified: the knowledge map of the process of 'Business Trip Application' and 'Purchase Management'. By applying the 'DL-Query' provided by the Protege-OWL as a plug-in module, the performance of the implemented ontology-based knowledge map has been examined. Two kinds of queries to check whether the knowledge is networked with respect to the referential relations as well as the ontology-based knowledge network can infer further facts that are not literally described were tested. The test results show that not only the referential navigation between knowledge has been correctly realized, but also the additional inference has been accurately performed.

Ontology-based Implementation of the Process-oriented Knowledge Map (온톨로지를 이용한 프로세스 기반 지식지도 구축)

  • Yoo, Kee-Dong;Hwang, Hyun-Seok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.87-97
    • /
    • 2012
  • A knowledge map is a diagramed network among knowledge which is related with each other in terms of the referential navigation. To formally as well as structurely represent various contextual use of knowledge, the ontology technology has been recommended to be applied. This research proposes a methodology to build the ontology-based knowledge map promoting referential navigation between knowledge. To prove the validity of the proposed concepts, an ontology-based knowledge map is designed as an example, which demonstrates whether the designed knowledge network in the knowledge map is underpinned by the referential navigation between knowledge.

A Methodology for Construction of Ontology-based Product Knowledge Map (온톨로지 기반 제품 지식 맵 구축 방법론)

  • Park J.M.;Hahm G.J.;Suh H.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.609-610
    • /
    • 2006
  • This paper introduces a methodology for construction of ontology-based product knowledge Map. For CPC(Collaborative Product Commerce) environment, engineering application of ontology has been studied . However, there are no generic and comprehensive methodologies for ontology construction yet because of such problems: dependency on experience of ontologist and domain experts and insufficiency of detail stages or rules. To solve those problems, we propose a methodology to construct ontology from engineering documents in semi-automatic. We use middle-out strategy and term's axioms, sub-definitions, to build ontology map. 5-turple ontology structure, semantic network and First order logic (FOL) are used for ontology definition in this study.

  • PDF

A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services (온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구)

  • Jeong, Hanjo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.79-92
    • /
    • 2015
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology and a topic modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patents, and reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a Relational Data-to-Triples transformer is implemented. Also, a topic modeling approach is introduced to extract the document-topic relationships. A triple store is used to manage and process the ontology data while preserving the network characteristics of knowledge map service. Knowledge map can be divided into two types: one is a knowledge map used in the area of knowledge management to store, manage and process the organizations' data as knowledge, the other is a knowledge map for analyzing and representing knowledge extracted from the science & technology documents. This research focuses on the latter one. In this research, a knowledge map service is introduced for integrating the national R&D data obtained from National Digital Science Library (NDSL) and National Science & Technology Information Service (NTIS), which are two major repository and service of national R&D data servicing in Korea. A lightweight ontology is used to design and build a knowledge map. Using the lightweight ontology enables us to represent and process knowledge as a simple network and it fits in with the knowledge navigation and visualization characteristics of the knowledge map. The lightweight ontology is used to represent the entities and their relationships in the knowledge maps, and an ontology repository is created to store and process the ontology. In the ontologies, researchers are implicitly connected by the national R&D data as the author relationships and the performer relationships. A knowledge map for displaying researchers' network is created, and the researchers' network is created by the co-authoring relationships of the national R&D documents and the co-participation relationships of the national R&D projects. To sum up, a knowledge map-service system based on topic modeling and ontology is introduced for processing knowledge about the national R&D data such as research projects, papers, patent, project reports, and Global Trends Briefing (GTB) data. The system has goals 1) to integrate the national R&D data obtained from NDSL and NTIS, 2) to provide a semantic & topic based information search on the integrated data, and 3) to provide a knowledge map services based on the semantic analysis and knowledge processing. The S&T information such as research papers, research reports, patents and GTB are daily updated from NDSL, and the R&D projects information including their participants and output information are updated from the NTIS. The S&T information and the national R&D information are obtained and integrated to the integrated database. Knowledge base is constructed by transforming the relational data into triples referencing R&D ontology. In addition, a topic modeling method is employed to extract the relationships between the S&T documents and topic keyword/s representing the documents. The topic modeling approach enables us to extract the relationships and topic keyword/s based on the semantics, not based on the simple keyword/s. Lastly, we show an experiment on the construction of the integrated knowledge base using the lightweight ontology and topic modeling, and the knowledge map services created based on the knowledge base are also introduced.

Ontology-Based Multi-level Knowledge Framework for a Knowledge Management System for Discrete-Product Development

  • Lee, Jae-Hyun;Suh, Hyo-Won
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.99-109
    • /
    • 2005
  • This paper introduces an approach to an ontology-based multi-level knowledge framework for a knowledge management system for discrete-product development. Participants in a product life cycle want to share comprehensive product knowledge without any ambiguity and heterogeneity. However, previous knowledge management approaches are limited in providing those aspects: therefore, we suggest an ontology-based multi-level knowledge framework (OBMKF). The bottom level, the axiom, specifies the semantics of concepts and relations of knowledge so ambiguity can be alleviated. The middle level is a product development knowledge map; it defines the concepts and the relations of the product domain knowledge and guides the engineer to process their engineering decisions. The middle level is then classified further into more detailed levels, such as generic product level, specific product level, product version level, and manufactured item level, according to the various viewpoints. The top level is specialized knowledge for a specific domain that gives the solution of a specific task or problem. It is classified into three knowledge types: expert knowledge, engineering function knowledge, and data-analysis-based knowledge. This proposed framework is based on ontology to accommodate a comprehensive range of knowledge and is represented with first-order logic to maintain a uniform representation.

Knowledge Map Service based on Ontology of Nation R&D Information (국가R&D정보에 대한 온톨로지 기반 지식맵 서비스)

  • Kim, Sun-Tae;Lee, Won-Goo
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.251-260
    • /
    • 2016
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patent, and project reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer the further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a RDB-to-Triples transformer is implemented. Lastly, we show an experiment on R&D data integration using the lightweight ontology, triples generation, and visualization and navigation of the knowledge map.

Ontology-based Knowledge Framework for Product Development (제품개발을 위한 온톨로지 기반 지식 프레임워크)

  • Suh H.W.;Lee J.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.88-96
    • /
    • 2006
  • This paper introduces an approach to ontology-based framework for knowledge management in a product development domain. The participants in a product life cycle want to share the product knowledge without any heterogeneity. However, previous knowledge management systems do not have any conceptual specifications of their knowledge. We suggest the three levels of knowledge framework. First level is an axiom, which specifies the semantics of concepts and relations. Second level is a product development knowledge map. It defines the common domain knowledge which domain experts agree with. Third level is a specialized knowledge for domain, which includes three knowledge types; expert knowledge, engineering function and data-analysis-based knowledge. We propose an ontology-based knowledge framework based on the three levels of knowledge. The framework has a uniform representation; first order logic to increase integrity of the framework. We implement the framework using prolog and test example queries to show the effectiveness of the framework.

Ontology-Based Knowledge Framework for Product Life cycle Management (PLM 지원을 위한 온톨로지 기반 지식 프레임워크)

  • Lee Jae-Hyun;Suh Hyo-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.22-31
    • /
    • 2006
  • This paper introduces an approach to an ontology-based knowledge framework for product life cycle management (PLM). Participants in a product life cycle want to share comprehensive product knowledge without any ambiguity and heterogeneity. However, previous knowledge management approaches are limited in providing those aspects. Therefore, we suggest an ontology-based knowledge framework including knowledge maps, axioms and specific knowledge far domain. The bottom level, the axiom, specifies the semantics of concepts and relations of knowledge so that ambiguity of the semantics can be alleviated. The middle level is a product development knowledge map; it defines the concepts and the relations of the product domain common knowledge and guides engineers to process their engineering decisions. The middle level is then classified further into more detailed levels, such as generic product level, specific product level, product version level, and product item level for PLM. The top level is specialized knowledge fer a specific domain that gives the solution of a specific task or problem. It is classified into three knowledge types: expert knowledge, engineering function knowledge, and data-analysis-based knowledge. This proposed framework is based on ontology to accommodate a comprehensive range of unambiguous knowledge for PLM and is represented with first-order logic to maintain a uniform representation.

Fuzzy Inference Engine for Ontology-based Expert Systems (온톨로지 기반의 전문가 시스템 구축을 위한 퍼지 추론 엔진)

  • Choi, Sang-Kyoon;Kim, Jae-Saeng
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.45-52
    • /
    • 2009
  • Recently, we started a project development of the digital expert system for the product design supporting in manufacturing industry. This digital expert system is used to the engineers in manufacturing industry for the process control, production management and system management. In this paper, we develop the ontology based inference engine shell for building of expert system. This expert system shell included a various functions which of Korean language supporting, graphical ontology map modeling interface, fuzzy rule definition function and etc. And, we introduce the knowledge representation method for the ontology map building and ontology based fuzzy inferencing method.

Development of a National R&D Knowledge Map Using the Subject-Object Relation based on Ontology (온톨로지 기반의 주제-객체관계를 이용한 국가 R&D 지식맵 구축)

  • Yang, Myung-Seok;Kang, Nam-Kyu;Kim, Yun-Jeong;Choi, Kwang-Nam;Kim, Young-Kuk
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.4
    • /
    • pp.123-142
    • /
    • 2012
  • To develop an intelligent search engine to help users retrieve information effectively, various methods, such as Semantic Web, have been used, An effective retrieval method of such methods uses ontology technology. In this paper, we built National R&D ontology after analyzing National R&D Information in NTIS and then implemented National R&D Knowledge Map to represent and retrieve information of the relationship between object and subject (project, human information, organization, research result) in R&D Ontology. In the National R&D Knowledge Map, center-node is the object selected by users, node is subject, subject's sub-node is user's favorite query in National R&D ontology after analyzing the relationship between object and subject. When a user selects sub-node, the system displays the results from inference engine after making query by SPARQL in National R&D ontology.