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Abstract - This paper introduces an approach to an ontology-based multi-level knowledge framework for a knowl­
edge management system for discrete-product development. Participants in a product life cycle want to share com­
prehensive product knowledge without any ambiguity and heterogeneity. However, previous knowledge 
management approaches are limited in providing those aspects: therefore, we suggest an ontology-based multi-level 
knowledge framework (OBMKF). The bottom level, the axiom, specifies the semantics of concepts and relations of 
knowledge so ambiguity can be alleviated. The middle level is a product development knowledge map; it defines the 
concepts and the relations of the product domain knowledge and guides the engineer to process their engineering 
decisions. The middle level is then classitied further into more detailed lev이s, such as generic product level, specific 
product level, product version level, and manufactured item level, according to the various viewpoints. The top level 
is specialized knowledge for a speciflc domain that gives the solution of a specific task or problem. It is classified into 
three knowledge types: expert knowledge, engineering function knowledge, and data-analysis-based knowledge. 
This proposed framework is based on ontology to accommodate a comprehensive range of knowledge and is repre­
sented with first-order logic to maintain a uniform representation.
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1. Introduction

D니ring the early 1990s, many researchers studied 
concurrent engineering to reduce the time-to-market 
[28]. To shorten the d니ration of prod니ct development, 
systematic management of prod니ct knowledge is required. 
Designers spend more than 70% of their working time 
searching and handling recently updated knowledge: 
such an unnecessary waste of time decreases the 
productivity of designers [17]. Stauffer et al. [26] 
studied why engineers use too much time to utilize the 
knowledge gained from past projects; the problem is 
that the past knowledge is not well organized. One 
reason for this problem is that designers do not have 
enough time to arrange the information and knowledge 
they have gained; moreover, companies not only 
disregard this knowledge as their asset, but they also do 
not budget enough for knowledge management (KM). 
According to the results of Court's empirical study [9], 
designers use about 30% of their personal knowledge 
during product development. However, in some cases, 
designers use up to 70% of their personal knowledge.
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Therefore, increasing the utilization of engineers5 personal 
knowledge and knowledge sharing through KM is a 
critical leverage point in product development.

KM can be considered as the 니！' basic processes of 
creating, storing/retrieving, transferring, and applying 
knowledge [1]. These four KM processes can be 
archived more easily if all relevant data, information, 
and knowledge are stored in an integrated knowledge­
base. The knowledge-base should have a knowledge 
framework that accommodates comprehensive knowledge 
unambiguously using a uniform representation. However, 
the knowledge of engineer groups or knowledge of an 
individ니al engineer is currently scattered over numerous 
engineering documents, CAD models, engineering 
databases, expert systems, and so on. Consequently, we 
have designed an integrated knowledge framework to 
manage the explicit knowledge externalized from 
various knowledge so니rces and to store the knowledge 
with the related data and information integrally. Both 
managing the implicit knowledge and externalizing the 
implicit knowledge into explicit knowledge are indirectly 
s니pported by our approach.

This paper introduces an ontology-based multi-level 
knowledge framework for comprehensive knowledge 
management. The proposed knowledge framework 
s니ggests a structure fbr knowledge storage and retrieval. 
Previously, several knowledge management approaches 
have been proposed. However, these approaches were 
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limited in accommodating several types of comprehensive 
knowledge without ambiguity and heterogeneity. The 
proposed approach is based on ontology, which is an 
emerging technology, b니t is not currently fully developed 
for knowledge management. In addition, we provide 
the lifecycle of our framework-based knowledge base. 
The lifecycle explains how to construct and use the 
knowledge framework.

In section 2, we discuss previous research and describe 
the proposed approach, an ontology-based multi-level 
knowledge framework, in section 3. The details of each 
lev이 of the knowledge framework are discussed in 
sections 4 and 5. In section 6, we describe the lifecycle 
of our knowledge framework to explain how to define 
and use the proposed framework. Section 7 details the 
prototype built based on the proposed structure, and 
finally in section 8, a summary and considerations for 
future research are provided.

2. Previous Research

Product Development Knowledge: Court [9] discusses 
the three basic types of knowledge that engineering 
designers use and access to during their work:

• General knowledge: gained through everyday 
experiences and general education.

• Domain-specific knowledge: gained through study 
and experience within the specific domain where 
the designer works.

• Procedural knowledge: gained from experience in 
니ndertaking tasks within a domain.

On the other hand, Vincenti [29] suggested six 
categories of knowledge that most engineers have or use: 
fundamental design concepts, criteria and specifications, 
theoretical tools, quantitative data, practical considerations, 
and design instrumentalities. Ferguson [12] also proposed 
that engineering knowledge should include knowledge 
gained from the experimental data as well as the 
experience of experts.

The above studies classified engineering knowledge 
into several categories. However, the criteria for 
classification are not clear, and the concrete relationships 
between the categories are not discussed. Clear 
classification criteria and concrete relationships of the 
knowledge need to be defined so that they can be 
accommodated with the knowledge framework.

Engineering Knowledge Framework: Several 
previous studies adopted diflerent knowledge frameworks 
fbr knowledge management systems. There have been 
several typical types of knowledge framework: PACT 
[1 이 and SHADE [18] developed agent-based 
collaborative product design systems based on ontology. 
Each agent had different problem-solving knowledge 
and the ontology was utilized to share the knowledge­
base. This study showed the relationship between 
problem-solving knowledge and ontology, but it did not 
specify a detailed structure of the ontology. Recently, 

some ontology-based knowledge frameworks have 
been proposed. OntoEdit [27] enables engineers to 
define ontology and its rules. These rules can be 
viewed as problem-solving knowledge. This knowledge 
framework showed a detailed structure of ontology and 
the role of axioms, but it did not specify the 
relationship between ontology and the problem-s이ving 
knowledge, Another approach is Staab and Maedche 
[25]'s study: they separated the structure of ontology 
into axioms and the remaining parts. They 이assiHed 
the axioms and suggested some templates to easily 
define these axioms. Yoshioka et al. [31] proposed a 
"meta-model5 approach to integrate different design 
systems. Each of these systems had different problem­
solving knowledge, and the 'meta-model5 corresponded 
with the knowledge map. The semantics of the concepts 
were described in a concept dictionary, aiming to avoid 
the burden of developing axioms. However, problems 
remained in maintaining the semantics of the meta­
model because of its informal specification. This model 
also showed the detailed roles of the knowledge map, 
but it ignored the role of formally specified axioms.

3. Ont이ogy・Based Multi-level 
Knowledge Framework

We propose an ontology-based multi-level knowledge 
framework (OBMKF). In this approach, the knowledge 
is categorized and struct니red for comprehensive, 
unambiguous and homogeneous knowledge management. 
For this, the knowledge is represented based on 
ontology. In addition, typical types of knowledge, such 
as engineering functions, expert rules, and data-analysis- 
based knowledge, are specified and accommodated 
within the frame. Furthermore, for a uniform represen­
tation, the first-order logic (FOL) is adopted.

The previous studies biggest various types of product 
development knowledge. However, the criteria for the 
classification of these various types of knowledge are 
not clear and the concrete relationships between the 
categories are not discussed. We define two classifi­
cation criteria: the role of knowledge and the source of 
knowledge. The role of knowledge classifies the 
knowledge into three levels according to the contribution 
of the knowledge: task-specific knowledge, common 
domain knowledge, and semantics of knowledge. The 
so니rce of knowledge criteria classifies the task-specific 
knowledge into three types according to the source: 
engineering function knowledge, expert knowledge^ and 
data-analysis-based knowledge. Further details of the 
knowledge structure are discussed in section 4.

Bozsak et al. [6] define an ontology str니ct니re with 
six tuples: concepts, relations, concept hierarchies, 
relation hierarchies, functions, and axioms. This 
ontology structure is considered to be similar to the 
knowledge modeling ontologies defined by Heijst [16]. 
These ontology components can be used as a base in a 
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knowledge framework. The concepts and relations 
tuples generally represent the basic structure of a 
domain knowledge. Thus, the common domain knowledge 
can be represented by concepts and relations, including 
concept hierarchies, relation hierarchies^ and functions. 
On the other hand tho니gh, axioms specify the 
semantics of concepts and relations so that the 
semantics of knowledge can be represented by axioms. 
In addition, the task-specific knowledge can also be 
defined 니sing ontology beca니se it specifies the 
quantified relationship between the concepts of ontology, 
which is the relationship between their instances. Thus, 
the three levels of knowledge are organized distinctly 
니sing an ontology structure. Among the three levels, 
the common domain knowledge level has similar 
concepts to the levels of ontology defined by Guarino 
[13]. This will be discussed further in section 5.

Ontology is usually expressed in a logic-based represen 
-tation; thus, detailed, accurate, consistent, sound, and 
meanin용fid distinctions among the concepts and relations 
can be made [15]. There are two typical representation 
approaches to describe ontology : FOL and description 
logic (DL). FOL has an appropriate syntax to describe 
the properties of objects; it provides inference 
algorithms such as forward chaining and backward 
chaining. KIF [21], Ontolingua [11], and Prolog [7] are 
FOL-based systems, and many studies, such as PSL [3], 
TOVE [22], and Engineering Ontology [4], 니se FOL 
representation approaches. On the other hand, DL has 
notations that are designed to easily describe 
definitions and properties of categories; it provides 
inference algorithms which are related to categorization, 
s니ch as the structured subsumption algorithm and 
tableau algorithm [2], CLASSIC, LOOM, and KRIS 
are DL-based systems [2].

The uniform representation should be as expressive 
as possible to convey the complex knowledge of the 
product development domain. In addition, the inference 
capability of the logic system should be as powerful as 
possible. Corcho and Perez [8] compared the expressi­
veness and the inference capability of several logical 
lang니ages. They stated that there is a trade-off between 
the degree of expressiveness and the inference efficiency 
of a language: more expressive representations require 
rigorous inference capabilities.

Although the expressiveness of FOL and DL cannot 
be compared by themselves, the DL has an expressive 
power of certain subsets of the FOL, possibly a니gmented 
by counting quantifiers [5], In addition, FOL can represent 
rules, but a pure DL cannot. Meanwhile, the inference 
capabilities of the two logics are also different: the 
inference capability of FOL focuses on how to process 
rules, but the inference capability of DL fbc니ses on 
how to categorize concepts. Vblz et al. [30] and Matheus 
et al. [23] studied the integration of OWL, which is a 
DL-based ontology language, with FOL rules to utilize 
the inference capabilities of FOL. However, it is not 

yet folly developed for practical application. Because 
the expressiveness of logic and the inference capability 
are important for many levels in our framework, we 
adopt FOL as a uniform representation. The FOL 
representation has sufficient expressiveness to represent 
the axioms as well as the concepts and relations; it also 
provides inferencing algorithms that can be a basis for 
task-specific knowledge [24].

4. Multiple Levels of Knowledge

As discussed above, we classify product development 
knowledge into three levels: semantics of knowledge, 
task-specific knowledge, and common domain knowledge. 
Hereafter, these levels will be called Axiom, Knowledge 
Map (K-Map), and Specialized Knowledge for Domain 
(SKD), respectively, to emboss the comprehensive ontology 
-based knowledge frame, as shown in Fig. 1. SKD is 
also further classified into three types and the K-Map 
has schema and multiple instance levels.

4.1. Axioms
The axioms specify the semantics of the concepts 

and relations in a domain using a logical representation 
to ensure both people and computers clearly understand 
the meaning without ambiguity. We define the axioms 
as fundamental properties of the concepts and relations 
as well as definitions. For example, let the 'subPartOf 
terminology represent a structure relation between two 
part concepts. The fundamental properties of the 
"subPartOf relation are as follows:

• the 'subPartOf relation is irreflexible: a part 
cannot be a sub-part of itself.

. the 'subPartOf relation is anti-symmetrical: if part 
X is a sub-part of part Y, then part Y is not a s니b- 
part of part X.

• the "subPartOf relation is transitive: if part X is a 
s니b-part of part Y and part Y is a s니b-part of part 
Z, then sub-part X is a sub-part of part Z.

The definitions of the concepts and relations also can 
be described in logic. For a simple example, let one 
part be a direct sub-part of another part when no 
middle part exists between the two parts. We can 
define the 4directSubPartOf relation in logic:

Fig. 1. Architecture of the Ontology-Based Multi-Level Knowledge 
Framework.
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Fig. 2. Example of Axioms

Axioms FOL formulae
1) subPartOf is non-reflexible (V ^j) -i subPartOf (p, p)
2) subPartQfis anti-symmetric (V pl,p2) subPartOf \,p2) => -> subPartOf (p2,p\)
3) subPartOf\s transitive (V p\,pL p3) subPartOf (p 1,p2) a subPartOf (p2,p3) => subPartOf (p 1,p3)
4) Definition of

'directSubPartOf relation ( V pl,p2)subPartOf(p\,pl)z —> ( 킈 p3 subPartOf(/?3,p2)subPartOf(p 1 ,p3))directSubPartOf(p\,pZ)

• part X is a direct sub-part of part Y if, and only if 
part X is a sub-part of part Y and a part Z does not 
exist s니ch that part Z is a s니b・part of part Y and 
part X is a sub-part of part Z.

We can translate the axiom into the FOL fbrm니lae, as 
shown in Fig. 2.

The fundamental properties and definitions maintain 
the consistency of a knowledge base. When new 
knowledge is introduced or previous knowledge evolves, 
it can be verified with the axioms. For example, if an 
engineer defines that part A is a direct sub-part of part 
B, the definition of 'directSubPartOf prevents the 
insertion of another part between these two parts.

4.2. Knowledge Map (K-Map)
Fig. 3. shows the K-Map of a product development 

domain. The K-Map describes the common knowledge 
of a domain with a semantic network struct니re. The 
structure of the K-Map is composed of concepts, 
relations, relation functions, concept hierarchies, and 
relation hierarchies. The concept 'Parf and the relation 
'subPartOf are the realization or perception of real 
world objects and their relation by humans. The 
relation function, Rel, defines relationships between 
relations and concepts. If a "subPartCff relation is 
related with two 'Parf concepts, we can describe this 
logic as 'Rel(subPartOf) = (Part. Party, The concept 
hierarchy is called taxonomy and is described with a 
concept hierarchy function If the concept
^Assembly" is a sub-concept of the concept "Part\ then 
it can be represented in logic as *卩(Assembly, Party. 
The relation hierarchy can also be described in logic by 

the relation hierarchy function QHR\ For example, the 
cdirectSubPartOf relation is a sub-relation of the 
"subPartOf relation; therefore, it can be represented in 
logic: '//^(directSubPartOf, subPartOf),. The relational 
hierarchy is omitted in Fig. 3. The K-Map can also be 
represented in the FOL formulae [19]. The K-Map 
should be agreed upon by domain experts and then 
used as the base of SKD. The agreed K-Map can be a 
reference model of a domain, and it can be further 
classified into several levels according to differing 
viewpoints.

4.3. Specialized Knowledge for Domain (SKD)
The SKD supports 니sers' decisions because it provides 

solutions for users5 problems. The SKD is represented 
based on the K-Map of the domain and provides a 
q니antihed relation between the instances of the K-Map. 
Since the SKD is concerned with specific tasks or 
problems, the logical formulae of the SKD are 
described with the concepts and relations in the K-Map 
and their instances.

We classify the SKD into three types according to the 
sources of knowledge: engineering Junction knowledge, 
expert knowledge, and data-analysis-based knowledge. 
Firstly, the engineering function knowledge comes 
from scientific theories and is represented by 
mathematical expressions. The engineering function 
knowledge is the numerical en응ineering relation between 
the concepts of K-Map. The following equation with a 
width of 'Leg' part and other factors is a good example. 
In the example, Ws, X, St, and SF are 'concepts' of the 
K-Map.

Example: A part has its part-characteristics. The strength, width, and SF are characteristics of a part. A part can be a 
sub-part of another part. EndProduct is a types of parts. A part has its part-function. The part-fiinction also has its 
characteristic. The part-fimction can be failed by some failures. The failures are provoked by some causes. In 
addition, a part has features. The feature is processed by manufacturing processes with tools.

isA Concept hierarchy呻成心

Fig. 3. Example of Graphical K-Map



Jaehyun Lee and Hyowon Suh Ontology-Based Multi-level Knowledge Framework for a Knowledge Management... 103

(SKD-1):
X=(Ws 丨 St*、SF)m
X: width of a Leg; Ws : student^ weight; St: material's 
tensile strength; SF: safety factor

Secondly, expert knowledge represents the knowledge 
extracted from experts, experience or intuition and is 
generally q니alitative knowledge. The expert knowledge 
has an 'IF THEN' form similar to a production rule. 
The following logic is an example of the expert 
knowledge.

(SKD-2):
IF feature.type = Closed_circular_hole THEN mfgProcess 
=Drilling.
IF mfgProcess = Drilling AND feature, material = Wood 
THEN tool = HandDrill.

In the example, feature.type, feature.material, mfgProcess, 
and tool are the concepts from the K-Map, and 
Closed_circular_hole, Wood, Drilling, and HandDrill 
are the instances of those concepts. Thus, this knowledge 
provides solutions for problems or tasks.

Lastly, we can source knowledge from a burden of 

accumulated design data. We define this knowledge as 
data-analysis-based knowledge. Since it is extracted 
from the analysis of collected data using certain 
analysis methods, it has relations with specific data- 
analysis methods and the collected data. For an 
example of a data-analysis-based knowledge, the relation 
between the Slackness (an instance of TailureChar5) 
and its correlated factors, Hole & Peg Tolerance, 
Relative Surface Friction (instances of tCauseChar,), 
and Peg strength (instances of 'PartChar'), may be 
mined from a data cube with a linear regression model 
and a continuous relation can be obtained. The data 
cube concerning the correlated factors can be obtained 
from data tables that have accumulated data of the 
factors. The following logic is an example of the data- 
analysis-based knowledge.

(SKD-3):
Y = -0.06* X\ + -29.9* A2 + 27* 沼 + 5.12
Y: Slackness', XI : HolePegTolerence\ XI : Relative- 
SurfaceFriction^ X3 : PegStrength
The examples of SKD can also be represented in the 

FOL formulae. Fig 4 shows FOL examples of each 

Fig. 4. An Example of SKD.

Type of SKD FOL formulae of examples

Engineering function(SKD-l): (V wl w2 w3) Width(yv\) a Weight(w2) /x MaterialStrength{w3) a (SF =3) a 
W\ = squar ((* (/ w2 SF) w3)).

Expert knowledge(SKD-2):

(V yzlp)Feature^ ahasFeatureChar (yzl) aFeaturelype(z\)a(=z! ClosedCircularHole) 
n (= p Drilling) a mfgProcess(p) /\ hasMfgProcess(y, p).
(yep i) Feature(y) a Material(c) a hasFeatureCharty, c) a VdlueOfic, wood) a 
hasA^gProcess (yp) a MfgProcess(p)八(=p Drilling) 
二〉7bol(t)八(=t HandDrill) a ProcessedBy(p f)

Data-analysis-based knowledge(SKD-3): yxl x2 x3) Slacknessfy) a HolePegTolerence(x\) /\ RelativeSurfaceFriction(x2) a 
PegStrength(x3) /\ (=y (+ 5.12 (+ (* (-0.06) xl ) (+ (* (-29.9) x2) (* 27.0 x3))))]
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Fig. 5.' Chair' Example of the Multi-levels ofK-Maps



104 International Journal of CAD/CAM Vol. 5, No. 1, pp. 99 〜109

SKD type. When we implement OBMKF, the FOL 
formulae can be expressed differently according to the 
specific implementation lang니age, such as Prolog, 
CLIPS, KIF, and others.

5. Multi-Levels of K-Map

In section 4.2, it shows that the K-Map has concepts 
and related instances. The concepts are related to a 
generic prod니ct and the instances are related to a 
specific product, s니ch as a chair. Moreover, when 
design changes are retired, several versions of the 
design need to be managed. In addition, the data- 
analysis-based knowledge requires information about 
the mamif代cturing item. Thus, the K-Map can be 
divided into several levels, such as generic prod니ct 
level, specific product level, product version level, and 
manufacturing item level, to cover the entire issues of a 
product lifecycle. Each level may have instantiation 
r이ationships with higher levels, while a higher lev이 is 
a meta-model of the adjacent lower level. This 
r이ationship is similar to the relationships between the 
levels of ontology as defined by Guarino [13]. Both the 
SKD and Axioms are integrated into the four levels 
according to the application. However, since most 
necessary semantics of knowledge are defined in the 
generic prod니ct and specific product levels, axioms are 
especially important for those levels. Both the expert 
knowledge and engineering function knowledge are 
generally defined in the generic product level or 
specific product level, and consequently used for the 
product version level or the manufacturing item level. 
Although the data-analysis~based knowledge can also 
be defined in the generic product level or specific 
product level, they are generally developed using 
analyses of the data from the product versions or 
manufacturing items.

We show a visualized m니Iti-level knowledge map for 
a 'Chair' product in Fig. 5. This shows the concepts 
and relations at each level and the instantiation 
relationships between the four levels.

6. OBMKF Lifecy이e

In this section, we discuss the lifecycle of an 
OBMKF: it briefly shows how to build the knowledge 
base (KB) with an OBMKF, how to apply the KB to 
product development, and how to update the OBMKF- 
based KB (OBMKF-KB).

Building Stage: The building stage builds the 
OBMKF-KB imduding the K-Map, Axioms, and SKD. 
This stage is performed by domain experts and 
knowledge engineers. In building the OBMKF-KB, the 
K-Map is defined initially because the K-Map is 
common ground knowledge for the given domain. 
Next, the Axioms need to be defined because they are 
explicit specifications of the concepts and relations of 

the K-Map. Finally, the SKD should be built based on 
the concepts and relations of the K-Map and Axioms 
beca니se the SKD is specialized knowledge for specific 
problems and requires the K-Map and Axioms. In this 
building stage, two levels of the K-Map, such as the 
generic product and specific product levels, need to be 
defined. The K-Map for a generic product is generated 
prior to the K-Maps of specific products because the 
K-Maps of specific products are instantiated from the 
K-Map of the generic product. Building the K-Maps, 
Axioms, or SKDs for generic products or specific 
products is a knowledge engineering process where 
knowledge engineers externalize the domain experts' 
implicit knowledge into explicit knowledge. Thus, our 
knowledge framework of OBMKF can be used not 
only to put the explicit knowledge in use, but also to 
acquire implicit knowledge.

Application Stage: Applying the OBMKF-KB to 
product development means that product design 
engineers can develop their projects with the support of 
the KB, especially at the generic or specific product 
level. While they are developing their projects using 
the KB, their design outputs are stored at the product 
versions level of the K-Maps. Therefore, the product 
version levels of the K-Maps accumulate in the KB for 
every development project.

The K-Maps, Axioms, and SKDs developed in the 
building stage are 니sed to guide design engineers or 
decide design parameters. Since the K-Maps have 
concepts and relations visualized as semantic networks, 
they can g니ide engineers to navigate the design 
parameters and their relationships. The axioms of each 
K-Map not only inform design engineers about the 
meaning of the concepts and relations of the K-Maps, 
but they are also utilized to infer new knowledge or 
validate it. Since the SKD is a type of task-specific 
knowledge, design engineers directly use it to solve 
their problems. Whenever engineers try to define the 
design data, they should check whether any related 
SKDs exist or not. If a related SKD exists, they should 
review the related SKD and decide whether or not to 
apply it to the design data.

Maintaining Stage: Maintaining or updating the KB 
needs to be done by domain experts and knowledge 
engineers. Updating the KB is related mainly to the 
generic or specific prod니ct levels. This maintenance 
updates a specific product level of a K-Map with the 
information from the product versions level, which is 
accumulated through the product development projects. 
Knowledge engineers can define new knowledge and 
revise existing knowledge to accommodate the new 
knowledge. In addition, the SKD and Axioms can be 
newly defined.

7. Prototype OBMKF

Prototyping of an OBMKF: We implemented a full
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(b-3) Axiom area (d) SKD window (e, g) Query window (f) Axiom window

Fig. 6. Main Screen-shot of OBMKF Prototype.

FOL representation of an OBMKF using Prolog. In this 
implementation, the predicates, variables, functions, 
logical connectivity, and so on are expressed in the 
Prolog format, which may not be the same as in FOL. 
The Prolog descriptions of the examples are fully 
developed on our website [20]. Furthermore, we developed 
a prototype system: the main screen shot of the 
prototype system is shown in Fig. 6.

The application supports 나sers editing the ontology, 
visualizing the ontology, and executing queries. Figs 
6(a), (b), and (c) show the basic user interfaces of the 
prototype. The tree-view on the right-side of the 
prototype shows the generic concepts for product 
development. These concepts are imported from the 
Prolog files. The visual navigator in the middle of the 
prototype shows the K-Map in a graphic manner. If an 
end-user drags a concept from the right-side tree-view 
and drops it into the navigator, the prototype system 
draws the concept and finds relations related to the 
concept. If a user inputs an instance of the concepts, 
the prototype suggests 니ser inp니t related instances of 
other concepts that have relations with the instantiated 
concept. This function allows a user to know what 
inp니ts are required based on the product ontology. All 
instances defined by the user are drawn in the visual 
navigator and listed on the left-side tree-view, The left­
side tree-view classifies the concepts and instances 
between projects.

The navigator has many concepts and instances (Fig. 
6(b-2)), and it also shows the SKD (Fig. 6(b-l)) and 
axioms (Fig. 6(b-3)) which are linked with the related 
concepts. The visual navigator has many nodes and 
edges so users may not easily identify what they want 
to know. Therefore, we can provide a categorized 
visualizing method to screen concepts and relations 
according to the users' viewpoints. The viewpoints 
include a taxonomical view, a specific-part view, specific 
-characteristic views, and so on. The end-user can 
define and review the SKD and axioms using other 
windows, i.e. Fig. 6(d) and (f). In addition, the 니ser can 
ask Prolog queries through the query window (Fig. 6(e) 
and (g)). We 니tilized the SISTUS-prolog program and 
Java to exec니te the Prolog queries. We used C# 
language to visualize the K-Map in a window format.

Queries with the OBMKF Prototype: The implemented 
OBMKF can be used in answering engineers5 questions. 
Thus, we developed some sample queries and to show 
the utility of the OBMKF. The detailed role of each 
level of the OBMKF, Axioms, K-Maps, and SKD, in 
the query processing is also described in the following 
queries and answers.
Query 1 : (Example of the knowled응e map)

Query in English : What are the sub-parts of 
a 'chair' part?
Query in Prolog : ?- s니bPartORchair, chair). 
Answer : No.
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Knowledge Base
Concepts of generic product level - Concepts of specific product level
part(X):- part_list(XL), member(X,XL). part_list([chair, leg, base, legjparts, pe이).

partChar(X) > material(X) ; strength(X) ; width(X) ; diameter(X) ; height(X) ; mass(X); 
surfaceFriction(X).
material(X) :- material_list(XL), member(X,XL). material__list([m 1 ]).
strength(X):- strength_list(XL), member(X,XL). strength_list([sl, s2]).
width(X):- width_list(XL), member(X,XL). width_list([wl]).
diameter(X):- diameter_list(XL), member(X,XL). diameterjist([dl, d2]).
height(X):- height_Iist(XL), member(X,XL). heightjist([hl]).
mass(X):- mass_list(XL), member(X,XL). mass_list([m2]).
surfaceFriction(X):- surfaceFrictionJistCXL), member(X,XL). surfaceFriction_list([sF 1, sF2]).
partFunction(X):- partFunction_list(XL), member(X,XL). partFunction_list([supporting, fastening]).
functionChar(X):- weight(X). weightji여([w2])・

Concepts of generic product level- Concepts of specific product level 
weight(X):- weight_list(XL), member(X,XL).
failure(X):- failureJist(XL), member(X,XL). failurejist([loose]).
failureChar(X):- faTlureCharJist(XL), member(X,XL). failureCharJist([slackness]).
cause(X):- cause_list(XL), member(X,XL).
cause_list([ho!ePegTorelance, relativeSurfaceFriction, pegStrength]).
causeChar(X):- causeChar_list(XL), member(X,XL). causeChar_list([tl, rFl, pSl]). 
solidGeom(X) :- solidGeomJist(XL), member(X,XL).
solidGeomJi이([$G_Chair, sG Leg, sG Base, sG Peg]).
feature(X) > feature^list(XL), member(X,XL). feature_list([leg_Hole, base^Hole]). 
featureChar(X) :- featureType(X) ; depth(X).
featureType(X):- featureTypeJist(XL), member(X,XL).
featureType_list([closed_Circular_Hole, through_Circula匸서이e]).
depth(X):- depth_list(XL), member(X,XL). depth_list([d3]), 
mfgProcess(X) :-7nfgProcess_list(XL), member(X,XL). mfgProcessJist([machining, drilling]). 
tool(X):- toolJist(XL), member(X,XL). toolJist([drillMachine; handDrill]).

Relations of generic product level - Relations Instances
hasPartChar(X,Y):- part(X), partChar(Y), hasPartChar_list(XL), member((X,Y),XL). 
hasPartCharJist([(leg, si), (leg, wl), (leg, ml), (peg, di), (peg, hl), (peg, s2), (peg, sFl), (peg, m2)]). 
subPartOf_iist([(leg_parts, chair), (base, chair), (peg, ch쇼ir), (leg, leg_parts)]).
reqFunction(X,Y):- part(X), partFunction(Y), reqFunctionJist(XL), member((X,Y),XL). 
reqFunctionJist([(chair, supporting), (chair, fastening)]).
hasFuncChar(X,Y):- partFunction(X), functionChar(Y), hasFuncChar_list(XL), member((X,Y),XL). 
hasFuncChar_list([(supporting, w2)]).
如ledBy(X,Y):- partFunction(X), failure(Y), failedByJist(XL), member((X,Y),XL). 
failedByJist([(fastening, loose)]).
provokedBy(X,Y):- failure(X), cause(Y), provokcdByJist(XL), member((X,Y),XL). 
provokedBy_Hst([(loose, holePegTorelance), (loose, relativeSurfaceFriction), (loose, pegStrength)]). 
hasCauseChar(X,Y):- cause(X), causeChar(Y), hasCauseCharJist(XL), member((X,Y),XL). 
hasCauseChar_list([(holePegTorelance, 나), (relativeSurfaceFriction, rFl), (pegStrength, pSl)]). 
hasGeom(X,Y):- part(X), solidGeom(Y), hasGeomJist(XL), member((X,Y),XL). 
hasGeomJist([(chair, sG_Chair), (leg, sG_Leg), (base, sG Base), (peg, sG_Peg)]).
hasFeature(X,Y):- solidGeom(X), feature(Y), hasFeatureJist(XL), member((X,Y),XL). 
hasFeatureChar(X,Y):- feature(X), featureChar(Y), hasFeatureChar_list(XL), member((X,Y),XL). 
hasFeatureChar_list([(leg_Hole, ml), (leg_Hole, closed_Circular_Hole), (base_Hole, d2), (base_Hole, 

d3), (base_Hole, sF2)]).
hasFeature_iist([(sG_Leg, leg_Hole), (sG_Base, base_Hole)]). _
hasMfgProcess(X,Y) :- feature(X), mfgProcess(Y), hasM^Process_list(XL), mem殮((X,Y),XL). 
hasMfgProcess_list([]).
processedBy(X?V):- mf^Process(X), tool(Y), processedByJist(XL), member((X;Y),XL).
processed By_l i st([] )•
attrValueOf(A, V):- attrValueJist(AL), member((A,V),AL). 
attrValueJist([(safetyFactor, 10), (w3, 5),(w2, 50), (pSl, 5.3), (tl, 0.03), (rFl, 0.02), (ml, wood)]).

Axioms
subPartOf(X,Y):- part(X), part(Y), X \== Y, subPartO如ist(XL), member((XJY),XL). 
subPartOf(X,Y):- subPartOf{X,Z), subPartOf^Z,Y).

SKD
sug응esjmf莒Method(FE, PR, T):- suggest_mfgProcessOfi；FE, PR), sugge야—mf百ToolOf(FE, PR, T).
suggesCmfgProcessOflJFE, PR):- feature(FE), featureType(FC), hasFeatureChar(FE, FC), FC == 

closed_Circular_Hole, mfgProcess(PR), PR = drilling,.
suggest_mf^ToolOf(FE, PR, T):- hasFeature(GE, FE), hasGeom(PA, GE), part(PA), material(M), 

〜 hasPartChar(PA, M), attrValueOfi^M, wood), m^Process(PR), PR == drilling, tool(T), T 드

handDrill.
아ieck_at忙ValueORwl,Z) :- attrValueOf(w2, Zl), attrValueOf{w3, Z2), attrValueOf(safetyFactor, SF), 

ground(Z), Z >= sqrt(Zl/Z2 * SF).
check_attrValueOfl；slackness,Z):- attrValueOf(tl,Xl), attrValueOf(rFI,X2),attrValueOf(pS 1 ,X3), Z is 

(©.0*Xl-29.9*X2-0.06*X3+5.12). _____________________________

Fig. 7. Knowledge-Base in Pr아。응
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Related Axiom : The ir-reflexive axiom of a 
"subPartof relation prohibits that the subPartOf 
relation can not have two identical parts as 
its domain and range.
subPartOf(X,Y): -part(X), part(Y), X \== Y ... 
Related K-Map : The Rel function, subPartOf 
(Pl, P2) :-part(Pl), part(P2), verifies whether 
each arguments of 'subPartOf' is a part. 
Related SKD : none.

Query 2 : (Example of the expert knowledge)
Query in English : What method is appropriate 
for making a closed circ니lar hole of a 'leg' 
part?
Query in Prolog : ?- suggest mfgMethod 
(leg_Hole, PR, T). -
Answer : PR = drilling, T = handDrill. 
Axioms : none.
K-Map : All inputs come from the Knowledge 
Map. The Rel functions of all relations verify 
weather each arguments are correct.
SKD : an expert knowledge, 'sugges匸m傍Method 
(FE, PR, T):- suggest_mfgProcessOf(FE, PR), 
suggest_mfgToolOf(FE, PR, T)「is utilized 
to answer for the query 2.

Query 3 : (Example of the engineering function)
Query in English : How long is the width of 
'leg' part?
Queiy in Prolog: ?- suggest^attr\^lueOf(wl ? X).
Answer : X = 10.
Axioms : The axiom serves the guarantee of 
the knowledge map's integrity. Omitted.
K-Map :The role is like the role of K-Map 
in q나ery 2. Omitted.
SKD : The following engineering function is 
utilized; sugges匸attr、回ueORw^Z): -attrVhlueOf 
(w2, Zl), attrValueOf(w3, Z2), attrA^lueOf 
(safetyFactor, SF), gro니nd(Z), Z is sqrt(Zl/ 
Z2 * SF).

Query 4 : (Example of the data-analysis-based knowledge) 
Query in English : What is the vahie of 
'slackness' of the 'loose' failure?
Query in Prolog: ?-suggest_attrWlue Of 
(slackness, X).
Answer : X = 5.014
Axioms : The axiom serves the guarantee of 
the knowledge map's integrity. Omitted.
K-Map : The role is same like the role of K- 
Map in queiy 2. Omitted.
SKD : The following data-analysis-based 
knowledge is utilized;suggest attrValueOf 
(slackness,Z):- attrValueOf(tl,XI), attrValueOf 
(rF 1 ,X2),attrValueOfi：pS 1 ,X3), Z is (27.0*Xl 
-29.9*X2-0.06*X3+5.12).

8. Conclusions

We suggested an Ontology-Based Multi-level Knowledge 
Framework (OBMKF) fbr the systematic storing and 
utilization of engineers5 knowledge in product development. 
The reason this framework is an appropriate framework 
of knowledge management is that it provides an 
explicit and comprehensive knowledge structure in a 
uniform representation for several aspects of domain 
knowledge.

Although the framework has a structure which can 
consistently represent information from fundamental 
properties of concepts and relations to task-specific 
knowledge, further research is still required to make it 
a practical and commercial framework. We developed a 
prototype and applied it to a simple prod니ct development. 
Even though the framework has not yet been applied to 
more complex products, we believe that it can be 
applied. Therefore, we 아lould apply the OBMKF to a 
practical example and find any problems that occur 
when we extend the applied scope of the framework. In 
addition, the framework needs to be integrated with an 
inferencing mechanism to solve practical problems. An 
XML-based representation of the framework is also 
necessary for internet-based collaborative environments. 
B니ilding an integrated prod니ct ontology and best 
practice for the framework will encourage others to 
focus on practical knowledge management iss니es.
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