
International Journal of CAD/CAM Vol. 5, No. 1, pp. 99 〜109 (2005) International
Journal of
CAD/CAM

www.ijcc.org

Ontology-Based Multi-level Knowledge Framework for a Knowledge
Management System for Discrete-Product Development
Jaehyun Lee and Hyowon Suh*
Department of Industrial Engineering, KAIST, Daejeon, Korea

Abstract - This paper introduces an approach to an ontology-based multi-level knowledge framework for a knowl­
edge management system for discrete-product development. Participants in a product life cycle want to share com­
prehensive product knowledge without any ambiguity and heterogeneity. However, previous knowledge
management approaches are limited in providing those aspects: therefore, we suggest an ontology-based multi-level
knowledge framework (OBMKF). The bottom level, the axiom, specifies the semantics of concepts and relations of
knowledge so ambiguity can be alleviated. The middle level is a product development knowledge map; it defines the
concepts and the relations of the product domain knowledge and guides the engineer to process their engineering
decisions. The middle level is then classitied further into more detailed lev이s, such as generic product level, specific
product level, product version level, and manufactured item level, according to the various viewpoints. The top level
is specialized knowledge for a speciflc domain that gives the solution of a specific task or problem. It is classified into
three knowledge types: expert knowledge, engineering function knowledge, and data-analysis-based knowledge.
This proposed framework is based on ontology to accommodate a comprehensive range of knowledge and is repre­
sented with first-order logic to maintain a uniform representation.

Keywords*. Ontology, Knowledge framework, Knowledge map, Expert system.

1. Introduction

D니ring the early 1990s, many researchers studied
concurrent engineering to reduce the time-to-market
[28]. To shorten the d니ration of prod니ct development,
systematic management of prod니ct knowledge is required.
Designers spend more than 70% of their working time
searching and handling recently updated knowledge:
such an unnecessary waste of time decreases the
productivity of designers [17]. Stauffer et al. [26]
studied why engineers use too much time to utilize the
knowledge gained from past projects; the problem is
that the past knowledge is not well organized. One
reason for this problem is that designers do not have
enough time to arrange the information and knowledge
they have gained; moreover, companies not only
disregard this knowledge as their asset, but they also do
not budget enough for knowledge management (KM).
According to the results of Court's empirical study [9],
designers use about 30% of their personal knowledge
during product development. However, in some cases,
designers use up to 70% of their personal knowledge.

’Corresponding author:
Tel: +82 (42) 869 3123
Fax: +82 (42) 869 3110
Homepage: http://iel.kaist.ac.kr/~hwsuh/
E-mail: hw_suh@kaist.ac.kr

Therefore, increasing the utilization of engineers5 personal
knowledge and knowledge sharing through KM is a
critical leverage point in product development.

KM can be considered as the 니！' basic processes of
creating, storing/retrieving, transferring, and applying
knowledge [1]. These four KM processes can be
archived more easily if all relevant data, information,
and knowledge are stored in an integrated knowledge­
base. The knowledge-base should have a knowledge
framework that accommodates comprehensive knowledge
unambiguously using a uniform representation. However,
the knowledge of engineer groups or knowledge of an
individ니al engineer is currently scattered over numerous
engineering documents, CAD models, engineering
databases, expert systems, and so on. Consequently, we
have designed an integrated knowledge framework to
manage the explicit knowledge externalized from
various knowledge so니rces and to store the knowledge
with the related data and information integrally. Both
managing the implicit knowledge and externalizing the
implicit knowledge into explicit knowledge are indirectly
s니pported by our approach.

This paper introduces an ontology-based multi-level
knowledge framework for comprehensive knowledge
management. The proposed knowledge framework
s니ggests a structure fbr knowledge storage and retrieval.
Previously, several knowledge management approaches
have been proposed. However, these approaches were

http://www.ijcc.org
http://iel.kaist.ac.kr/%7Ehwsuh/
mailto:hw_suh@kaist.ac.kr

100 International Journal of CAD/CAM Vol. 5, No. 1, pp. 99 - 109

limited in accommodating several types of comprehensive
knowledge without ambiguity and heterogeneity. The
proposed approach is based on ontology, which is an
emerging technology, b니t is not currently fully developed
for knowledge management. In addition, we provide
the lifecycle of our framework-based knowledge base.
The lifecycle explains how to construct and use the
knowledge framework.

In section 2, we discuss previous research and describe
the proposed approach, an ontology-based multi-level
knowledge framework, in section 3. The details of each
lev이 of the knowledge framework are discussed in
sections 4 and 5. In section 6, we describe the lifecycle
of our knowledge framework to explain how to define
and use the proposed framework. Section 7 details the
prototype built based on the proposed structure, and
finally in section 8, a summary and considerations for
future research are provided.

2. Previous Research

Product Development Knowledge: Court [9] discusses
the three basic types of knowledge that engineering
designers use and access to during their work:

• General knowledge: gained through everyday
experiences and general education.

• Domain-specific knowledge: gained through study
and experience within the specific domain where
the designer works.

• Procedural knowledge: gained from experience in
니ndertaking tasks within a domain.

On the other hand, Vincenti [29] suggested six
categories of knowledge that most engineers have or use:
fundamental design concepts, criteria and specifications,
theoretical tools, quantitative data, practical considerations,
and design instrumentalities. Ferguson [12] also proposed
that engineering knowledge should include knowledge
gained from the experimental data as well as the
experience of experts.

The above studies classified engineering knowledge
into several categories. However, the criteria for
classification are not clear, and the concrete relationships
between the categories are not discussed. Clear
classification criteria and concrete relationships of the
knowledge need to be defined so that they can be
accommodated with the knowledge framework.

Engineering Knowledge Framework: Several
previous studies adopted diflerent knowledge frameworks
fbr knowledge management systems. There have been
several typical types of knowledge framework: PACT
[1 이 and SHADE [18] developed agent-based
collaborative product design systems based on ontology.
Each agent had different problem-solving knowledge
and the ontology was utilized to share the knowledge­
base. This study showed the relationship between
problem-solving knowledge and ontology, but it did not
specify a detailed structure of the ontology. Recently,

some ontology-based knowledge frameworks have
been proposed. OntoEdit [27] enables engineers to
define ontology and its rules. These rules can be
viewed as problem-solving knowledge. This knowledge
framework showed a detailed structure of ontology and
the role of axioms, but it did not specify the
relationship between ontology and the problem-s이ving
knowledge, Another approach is Staab and Maedche
[25]'s study: they separated the structure of ontology
into axioms and the remaining parts. They 이assiHed
the axioms and suggested some templates to easily
define these axioms. Yoshioka et al. [31] proposed a
"meta-model5 approach to integrate different design
systems. Each of these systems had different problem­
solving knowledge, and the 'meta-model5 corresponded
with the knowledge map. The semantics of the concepts
were described in a concept dictionary, aiming to avoid
the burden of developing axioms. However, problems
remained in maintaining the semantics of the meta­
model because of its informal specification. This model
also showed the detailed roles of the knowledge map,
but it ignored the role of formally specified axioms.

3. Ont이ogy・Based Multi-level
Knowledge Framework

We propose an ontology-based multi-level knowledge
framework (OBMKF). In this approach, the knowledge
is categorized and struct니red for comprehensive,
unambiguous and homogeneous knowledge management.
For this, the knowledge is represented based on
ontology. In addition, typical types of knowledge, such
as engineering functions, expert rules, and data-analysis-
based knowledge, are specified and accommodated
within the frame. Furthermore, for a uniform represen­
tation, the first-order logic (FOL) is adopted.

The previous studies biggest various types of product
development knowledge. However, the criteria for the
classification of these various types of knowledge are
not clear and the concrete relationships between the
categories are not discussed. We define two classifi­
cation criteria: the role of knowledge and the source of
knowledge. The role of knowledge classifies the
knowledge into three levels according to the contribution
of the knowledge: task-specific knowledge, common
domain knowledge, and semantics of knowledge. The
so니rce of knowledge criteria classifies the task-specific
knowledge into three types according to the source:
engineering function knowledge, expert knowledge^ and
data-analysis-based knowledge. Further details of the
knowledge structure are discussed in section 4.

Bozsak et al. [6] define an ontology str니ct니re with
six tuples: concepts, relations, concept hierarchies,
relation hierarchies, functions, and axioms. This
ontology structure is considered to be similar to the
knowledge modeling ontologies defined by Heijst [16].
These ontology components can be used as a base in a

Jaehyun Lee and Hyowon Suh Ontology-Based Multi-level Knowledge Framework far a Knowledge Management... 101

knowledge framework. The concepts and relations
tuples generally represent the basic structure of a
domain knowledge. Thus, the common domain knowledge
can be represented by concepts and relations, including
concept hierarchies, relation hierarchies^ and functions.
On the other hand tho니gh, axioms specify the
semantics of concepts and relations so that the
semantics of knowledge can be represented by axioms.
In addition, the task-specific knowledge can also be
defined 니sing ontology beca니se it specifies the
quantified relationship between the concepts of ontology,
which is the relationship between their instances. Thus,
the three levels of knowledge are organized distinctly
니sing an ontology structure. Among the three levels,
the common domain knowledge level has similar
concepts to the levels of ontology defined by Guarino
[13]. This will be discussed further in section 5.

Ontology is usually expressed in a logic-based represen
-tation; thus, detailed, accurate, consistent, sound, and
meanin용fid distinctions among the concepts and relations
can be made [15]. There are two typical representation
approaches to describe ontology : FOL and description
logic (DL). FOL has an appropriate syntax to describe
the properties of objects; it provides inference
algorithms such as forward chaining and backward
chaining. KIF [21], Ontolingua [11], and Prolog [7] are
FOL-based systems, and many studies, such as PSL [3],
TOVE [22], and Engineering Ontology [4], 니se FOL
representation approaches. On the other hand, DL has
notations that are designed to easily describe
definitions and properties of categories; it provides
inference algorithms which are related to categorization,
s니ch as the structured subsumption algorithm and
tableau algorithm [2], CLASSIC, LOOM, and KRIS
are DL-based systems [2].

The uniform representation should be as expressive
as possible to convey the complex knowledge of the
product development domain. In addition, the inference
capability of the logic system should be as powerful as
possible. Corcho and Perez [8] compared the expressi­
veness and the inference capability of several logical
lang니ages. They stated that there is a trade-off between
the degree of expressiveness and the inference efficiency
of a language: more expressive representations require
rigorous inference capabilities.

Although the expressiveness of FOL and DL cannot
be compared by themselves, the DL has an expressive
power of certain subsets of the FOL, possibly a니gmented
by counting quantifiers [5], In addition, FOL can represent
rules, but a pure DL cannot. Meanwhile, the inference
capabilities of the two logics are also different: the
inference capability of FOL focuses on how to process
rules, but the inference capability of DL fbc니ses on
how to categorize concepts. Vblz et al. [30] and Matheus
et al. [23] studied the integration of OWL, which is a
DL-based ontology language, with FOL rules to utilize
the inference capabilities of FOL. However, it is not

yet folly developed for practical application. Because
the expressiveness of logic and the inference capability
are important for many levels in our framework, we
adopt FOL as a uniform representation. The FOL
representation has sufficient expressiveness to represent
the axioms as well as the concepts and relations; it also
provides inferencing algorithms that can be a basis for
task-specific knowledge [24].

4. Multiple Levels of Knowledge

As discussed above, we classify product development
knowledge into three levels: semantics of knowledge,
task-specific knowledge, and common domain knowledge.
Hereafter, these levels will be called Axiom, Knowledge
Map (K-Map), and Specialized Knowledge for Domain
(SKD), respectively, to emboss the comprehensive ontology
-based knowledge frame, as shown in Fig. 1. SKD is
also further classified into three types and the K-Map
has schema and multiple instance levels.

4.1. Axioms
The axioms specify the semantics of the concepts

and relations in a domain using a logical representation
to ensure both people and computers clearly understand
the meaning without ambiguity. We define the axioms
as fundamental properties of the concepts and relations
as well as definitions. For example, let the 'subPartOf
terminology represent a structure relation between two
part concepts. The fundamental properties of the
"subPartOf relation are as follows:

• the 'subPartOf relation is irreflexible: a part
cannot be a sub-part of itself.

. the 'subPartOf relation is anti-symmetrical: if part
X is a sub-part of part Y, then part Y is not a s니b-
part of part X.

• the "subPartOf relation is transitive: if part X is a
s니b-part of part Y and part Y is a s니b-part of part
Z, then sub-part X is a sub-part of part Z.

The definitions of the concepts and relations also can
be described in logic. For a simple example, let one
part be a direct sub-part of another part when no
middle part exists between the two parts. We can
define the 4directSubPartOf relation in logic:

Fig. 1. Architecture of the Ontology-Based Multi-Level Knowledge
Framework.

Ontology-Based Multi-level Knowledge Framework (OBMKF)

U
niform

 Logic R
epresentation

(FO
L)

Specialized Knowledge Jbr Domain (SKD): Task-specie Jaiowledge

Expert Engineering Data-Analysis-
Knowledge Function based KnoWedge
_____5 r (t___________ 11______

J L J u J L
_______ Instances |

Knowtedge Map Common domain knowledge

H
Aximns : Satumfics qfknmvledge I

102 International Journal of CAD/CAM Vol. 5, No. 1, pp. 99- 109

Fig. 2. Example of Axioms

Axioms FOL formulae
1) subPartOf is non-reflexible (V ^j) -i subPartOf (p, p)
2) subPartQfis anti-symmetric (V pl,p2) subPartOf \,p2) => -> subPartOf (p2,p\)
3) subPartOf\s transitive (V p\,pL p3) subPartOf (p 1,p2) a subPartOf (p2,p3) => subPartOf (p 1,p3)
4) Definition of

'directSubPartOf relation (V pl,p2)subPartOf(p\,pl)z —> (킈 p3 subPartOf(/?3,p2)subPartOf(p 1 ,p3))directSubPartOf(p\,pZ)

• part X is a direct sub-part of part Y if, and only if
part X is a sub-part of part Y and a part Z does not
exist s니ch that part Z is a s니b・part of part Y and
part X is a sub-part of part Z.

We can translate the axiom into the FOL fbrm니lae, as
shown in Fig. 2.

The fundamental properties and definitions maintain
the consistency of a knowledge base. When new
knowledge is introduced or previous knowledge evolves,
it can be verified with the axioms. For example, if an
engineer defines that part A is a direct sub-part of part
B, the definition of 'directSubPartOf prevents the
insertion of another part between these two parts.

4.2. Knowledge Map (K-Map)
Fig. 3. shows the K-Map of a product development

domain. The K-Map describes the common knowledge
of a domain with a semantic network struct니re. The
structure of the K-Map is composed of concepts,
relations, relation functions, concept hierarchies, and
relation hierarchies. The concept 'Parf and the relation
'subPartOf are the realization or perception of real
world objects and their relation by humans. The
relation function, Rel, defines relationships between
relations and concepts. If a "subPartCff relation is
related with two 'Parf concepts, we can describe this
logic as 'Rel(subPartOf) = (Part. Party, The concept
hierarchy is called taxonomy and is described with a
concept hierarchy function If the concept
^Assembly" is a sub-concept of the concept "Part\ then
it can be represented in logic as *卩(Assembly, Party.
The relation hierarchy can also be described in logic by

the relation hierarchy function QHR\ For example, the
cdirectSubPartOf relation is a sub-relation of the
"subPartOf relation; therefore, it can be represented in
logic: '//^(directSubPartOf, subPartOf),. The relational
hierarchy is omitted in Fig. 3. The K-Map can also be
represented in the FOL formulae [19]. The K-Map
should be agreed upon by domain experts and then
used as the base of SKD. The agreed K-Map can be a
reference model of a domain, and it can be further
classified into several levels according to differing
viewpoints.

4.3. Specialized Knowledge for Domain (SKD)
The SKD supports 니sers' decisions because it provides

solutions for users5 problems. The SKD is represented
based on the K-Map of the domain and provides a
q니antihed relation between the instances of the K-Map.
Since the SKD is concerned with specific tasks or
problems, the logical formulae of the SKD are
described with the concepts and relations in the K-Map
and their instances.

We classify the SKD into three types according to the
sources of knowledge: engineering Junction knowledge,
expert knowledge, and data-analysis-based knowledge.
Firstly, the engineering function knowledge comes
from scientific theories and is represented by
mathematical expressions. The engineering function
knowledge is the numerical en응ineering relation between
the concepts of K-Map. The following equation with a
width of 'Leg' part and other factors is a good example.
In the example, Ws, X, St, and SF are 'concepts' of the
K-Map.

Example: A part has its part-characteristics. The strength, width, and SF are characteristics of a part. A part can be a
sub-part of another part. EndProduct is a types of parts. A part has its part-function. The part-fiinction also has its
characteristic. The part-fimction can be failed by some failures. The failures are provoked by some causes. In
addition, a part has features. The feature is processed by manufacturing processes with tools.

isA Concept hierarchy呻成心

Fig. 3. Example of Graphical K-Map

Jaehyun Lee and Hyowon Suh Ontology-Based Multi-level Knowledge Framework for a Knowledge Management... 103

(SKD-1):
X=(Ws 丨 St*、SF)m
X: width of a Leg; Ws : student^ weight; St: material's
tensile strength; SF: safety factor

Secondly, expert knowledge represents the knowledge
extracted from experts, experience or intuition and is
generally q니alitative knowledge. The expert knowledge
has an 'IF THEN' form similar to a production rule.
The following logic is an example of the expert
knowledge.

(SKD-2):
IF feature.type = Closed_circular_hole THEN mfgProcess
=Drilling.
IF mfgProcess = Drilling AND feature, material = Wood
THEN tool = HandDrill.

In the example, feature.type, feature.material, mfgProcess,
and tool are the concepts from the K-Map, and
Closed_circular_hole, Wood, Drilling, and HandDrill
are the instances of those concepts. Thus, this knowledge
provides solutions for problems or tasks.

Lastly, we can source knowledge from a burden of

accumulated design data. We define this knowledge as
data-analysis-based knowledge. Since it is extracted
from the analysis of collected data using certain
analysis methods, it has relations with specific data-
analysis methods and the collected data. For an
example of a data-analysis-based knowledge, the relation
between the Slackness (an instance of TailureChar5)
and its correlated factors, Hole & Peg Tolerance,
Relative Surface Friction (instances of tCauseChar,),
and Peg strength (instances of 'PartChar'), may be
mined from a data cube with a linear regression model
and a continuous relation can be obtained. The data
cube concerning the correlated factors can be obtained
from data tables that have accumulated data of the
factors. The following logic is an example of the data-
analysis-based knowledge.

(SKD-3):
Y = -0.06* X\ + -29.9* A2 + 27* 沼 + 5.12
Y: Slackness', XI : HolePegTolerence\ XI : Relative-
SurfaceFriction^ X3 : PegStrength
The examples of SKD can also be represented in the

FOL formulae. Fig 4 shows FOL examples of each

Fig. 4. An Example of SKD.

Type of SKD FOL formulae of examples

Engineering function(SKD-l): (V wl w2 w3) Width(yv\) a Weight(w2) /x MaterialStrength{w3) a (SF =3) a
W\ = squar ((* (/ w2 SF) w3)).

Expert knowledge(SKD-2):

(V yzlp)Feature^ ahasFeatureChar (yzl) aFeaturelype(z\)a(=z! ClosedCircularHole)
n (= p Drilling) a mfgProcess(p) /\ hasMfgProcess(y, p).
(yep i) Feature(y) a Material(c) a hasFeatureCharty, c) a VdlueOfic, wood) a
hasA^gProcess (yp) a MfgProcess(p)八(=p Drilling)
二〉7bol(t)八(=t HandDrill) a ProcessedBy(p f)

Data-analysis-based knowledge(SKD-3): yxl x2 x3) Slacknessfy) a HolePegTolerence(x\) /\ RelativeSurfaceFriction(x2) a
PegStrength(x3) /\ (=y (+ 5.12 (+ (* (-0.06) xl) (+ (* (-29.9) x2) (* 27.0 x3))))]

w~4̂

**̂

，

K

앗
지

纣/

Fig. 5.' Chair' Example of the Multi-levels ofK-Maps

104 International Journal of CAD/CAM Vol. 5, No. 1, pp. 99 〜109

SKD type. When we implement OBMKF, the FOL
formulae can be expressed differently according to the
specific implementation lang니age, such as Prolog,
CLIPS, KIF, and others.

5. Multi-Levels of K-Map

In section 4.2, it shows that the K-Map has concepts
and related instances. The concepts are related to a
generic prod니ct and the instances are related to a
specific product, s니ch as a chair. Moreover, when
design changes are retired, several versions of the
design need to be managed. In addition, the data-
analysis-based knowledge requires information about
the mamif代cturing item. Thus, the K-Map can be
divided into several levels, such as generic prod니ct
level, specific product level, product version level, and
manufacturing item level, to cover the entire issues of a
product lifecycle. Each level may have instantiation
r이ationships with higher levels, while a higher lev이 is
a meta-model of the adjacent lower level. This
r이ationship is similar to the relationships between the
levels of ontology as defined by Guarino [13]. Both the
SKD and Axioms are integrated into the four levels
according to the application. However, since most
necessary semantics of knowledge are defined in the
generic prod니ct and specific product levels, axioms are
especially important for those levels. Both the expert
knowledge and engineering function knowledge are
generally defined in the generic product level or
specific product level, and consequently used for the
product version level or the manufacturing item level.
Although the data-analysis~based knowledge can also
be defined in the generic product level or specific
product level, they are generally developed using
analyses of the data from the product versions or
manufacturing items.

We show a visualized m니Iti-level knowledge map for
a 'Chair' product in Fig. 5. This shows the concepts
and relations at each level and the instantiation
relationships between the four levels.

6. OBMKF Lifecy이e

In this section, we discuss the lifecycle of an
OBMKF: it briefly shows how to build the knowledge
base (KB) with an OBMKF, how to apply the KB to
product development, and how to update the OBMKF-
based KB (OBMKF-KB).

Building Stage: The building stage builds the
OBMKF-KB imduding the K-Map, Axioms, and SKD.
This stage is performed by domain experts and
knowledge engineers. In building the OBMKF-KB, the
K-Map is defined initially because the K-Map is
common ground knowledge for the given domain.
Next, the Axioms need to be defined because they are
explicit specifications of the concepts and relations of

the K-Map. Finally, the SKD should be built based on
the concepts and relations of the K-Map and Axioms
beca니se the SKD is specialized knowledge for specific
problems and requires the K-Map and Axioms. In this
building stage, two levels of the K-Map, such as the
generic product and specific product levels, need to be
defined. The K-Map for a generic product is generated
prior to the K-Maps of specific products because the
K-Maps of specific products are instantiated from the
K-Map of the generic product. Building the K-Maps,
Axioms, or SKDs for generic products or specific
products is a knowledge engineering process where
knowledge engineers externalize the domain experts'
implicit knowledge into explicit knowledge. Thus, our
knowledge framework of OBMKF can be used not
only to put the explicit knowledge in use, but also to
acquire implicit knowledge.

Application Stage: Applying the OBMKF-KB to
product development means that product design
engineers can develop their projects with the support of
the KB, especially at the generic or specific product
level. While they are developing their projects using
the KB, their design outputs are stored at the product
versions level of the K-Maps. Therefore, the product
version levels of the K-Maps accumulate in the KB for
every development project.

The K-Maps, Axioms, and SKDs developed in the
building stage are 니sed to guide design engineers or
decide design parameters. Since the K-Maps have
concepts and relations visualized as semantic networks,
they can g니ide engineers to navigate the design
parameters and their relationships. The axioms of each
K-Map not only inform design engineers about the
meaning of the concepts and relations of the K-Maps,
but they are also utilized to infer new knowledge or
validate it. Since the SKD is a type of task-specific
knowledge, design engineers directly use it to solve
their problems. Whenever engineers try to define the
design data, they should check whether any related
SKDs exist or not. If a related SKD exists, they should
review the related SKD and decide whether or not to
apply it to the design data.

Maintaining Stage: Maintaining or updating the KB
needs to be done by domain experts and knowledge
engineers. Updating the KB is related mainly to the
generic or specific prod니ct levels. This maintenance
updates a specific product level of a K-Map with the
information from the product versions level, which is
accumulated through the product development projects.
Knowledge engineers can define new knowledge and
revise existing knowledge to accommodate the new
knowledge. In addition, the SKD and Axioms can be
newly defined.

7. Prototype OBMKF

Prototyping of an OBMKF: We implemented a full

Jaehyun Lee and Hyowon Suh Ontology-Based Multi-level Knowledge Framework far a Knowledge Management... 105

(b-3) Axiom area (d) SKD window (e, g) Query window (f) Axiom window

Fig. 6. Main Screen-shot of OBMKF Prototype.

FOL representation of an OBMKF using Prolog. In this
implementation, the predicates, variables, functions,
logical connectivity, and so on are expressed in the
Prolog format, which may not be the same as in FOL.
The Prolog descriptions of the examples are fully
developed on our website [20]. Furthermore, we developed
a prototype system: the main screen shot of the
prototype system is shown in Fig. 6.

The application supports 나sers editing the ontology,
visualizing the ontology, and executing queries. Figs
6(a), (b), and (c) show the basic user interfaces of the
prototype. The tree-view on the right-side of the
prototype shows the generic concepts for product
development. These concepts are imported from the
Prolog files. The visual navigator in the middle of the
prototype shows the K-Map in a graphic manner. If an
end-user drags a concept from the right-side tree-view
and drops it into the navigator, the prototype system
draws the concept and finds relations related to the
concept. If a user inputs an instance of the concepts,
the prototype suggests 니ser inp니t related instances of
other concepts that have relations with the instantiated
concept. This function allows a user to know what
inp니ts are required based on the product ontology. All
instances defined by the user are drawn in the visual
navigator and listed on the left-side tree-view, The left­
side tree-view classifies the concepts and instances
between projects.

The navigator has many concepts and instances (Fig.
6(b-2)), and it also shows the SKD (Fig. 6(b-l)) and
axioms (Fig. 6(b-3)) which are linked with the related
concepts. The visual navigator has many nodes and
edges so users may not easily identify what they want
to know. Therefore, we can provide a categorized
visualizing method to screen concepts and relations
according to the users' viewpoints. The viewpoints
include a taxonomical view, a specific-part view, specific
-characteristic views, and so on. The end-user can
define and review the SKD and axioms using other
windows, i.e. Fig. 6(d) and (f). In addition, the 니ser can
ask Prolog queries through the query window (Fig. 6(e)
and (g)). We 니tilized the SISTUS-prolog program and
Java to exec니te the Prolog queries. We used C#
language to visualize the K-Map in a window format.

Queries with the OBMKF Prototype: The implemented
OBMKF can be used in answering engineers5 questions.
Thus, we developed some sample queries and to show
the utility of the OBMKF. The detailed role of each
level of the OBMKF, Axioms, K-Maps, and SKD, in
the query processing is also described in the following
queries and answers.
Query 1 : (Example of the knowled응e map)

Query in English : What are the sub-parts of
a 'chair' part?
Query in Prolog : ?- s니bPartORchair, chair).
Answer : No.

106 International Journal of CAD/CAM Vol.5, No. 1, pp. 99-109

Knowledge Base
Concepts of generic product level - Concepts of specific product level
part(X):- part_list(XL), member(X,XL). part_list([chair, leg, base, legjparts, pe이).

partChar(X) > material(X) ; strength(X) ; width(X) ; diameter(X) ; height(X) ; mass(X);
surfaceFriction(X).
material(X) :- material_list(XL), member(X,XL). material__list([m 1]).
strength(X):- strength_list(XL), member(X,XL). strength_list([sl, s2]).
width(X):- width_list(XL), member(X,XL). width_list([wl]).
diameter(X):- diameter_list(XL), member(X,XL). diameterjist([dl, d2]).
height(X):- height_Iist(XL), member(X,XL). heightjist([hl]).
mass(X):- mass_list(XL), member(X,XL). mass_list([m2]).
surfaceFriction(X):- surfaceFrictionJistCXL), member(X,XL). surfaceFriction_list([sF 1, sF2]).
partFunction(X):- partFunction_list(XL), member(X,XL). partFunction_list([supporting, fastening]).
functionChar(X):- weight(X). weightji여([w2])・

Concepts of generic product level- Concepts of specific product level
weight(X):- weight_list(XL), member(X,XL).
failure(X):- failureJist(XL), member(X,XL). failurejist([loose]).
failureChar(X):- faTlureCharJist(XL), member(X,XL). failureCharJist([slackness]).
cause(X):- cause_list(XL), member(X,XL).
cause_list([ho!ePegTorelance, relativeSurfaceFriction, pegStrength]).
causeChar(X):- causeChar_list(XL), member(X,XL). causeChar_list([tl, rFl, pSl]).
solidGeom(X) :- solidGeomJist(XL), member(X,XL).
solidGeomJi이([$G_Chair, sG Leg, sG Base, sG Peg]).
feature(X) > feature^list(XL), member(X,XL). feature_list([leg_Hole, base^Hole]).
featureChar(X) :- featureType(X) ; depth(X).
featureType(X):- featureTypeJist(XL), member(X,XL).
featureType_list([closed_Circular_Hole, through_Circula匸서이e]).
depth(X):- depth_list(XL), member(X,XL). depth_list([d3]),
mfgProcess(X) :-7nfgProcess_list(XL), member(X,XL). mfgProcessJist([machining, drilling]).
tool(X):- toolJist(XL), member(X,XL). toolJist([drillMachine; handDrill]).

Relations of generic product level - Relations Instances
hasPartChar(X,Y):- part(X), partChar(Y), hasPartChar_list(XL), member((X,Y),XL).
hasPartCharJist([(leg, si), (leg, wl), (leg, ml), (peg, di), (peg, hl), (peg, s2), (peg, sFl), (peg, m2)]).
subPartOf_iist([(leg_parts, chair), (base, chair), (peg, ch쇼ir), (leg, leg_parts)]).
reqFunction(X,Y):- part(X), partFunction(Y), reqFunctionJist(XL), member((X,Y),XL).
reqFunctionJist([(chair, supporting), (chair, fastening)]).
hasFuncChar(X,Y):- partFunction(X), functionChar(Y), hasFuncChar_list(XL), member((X,Y),XL).
hasFuncChar_list([(supporting, w2)]).
如ledBy(X,Y):- partFunction(X), failure(Y), failedByJist(XL), member((X,Y),XL).
failedByJist([(fastening, loose)]).
provokedBy(X,Y):- failure(X), cause(Y), provokcdByJist(XL), member((X,Y),XL).
provokedBy_Hst([(loose, holePegTorelance), (loose, relativeSurfaceFriction), (loose, pegStrength)]).
hasCauseChar(X,Y):- cause(X), causeChar(Y), hasCauseCharJist(XL), member((X,Y),XL).
hasCauseChar_list([(holePegTorelance, 나), (relativeSurfaceFriction, rFl), (pegStrength, pSl)]).
hasGeom(X,Y):- part(X), solidGeom(Y), hasGeomJist(XL), member((X,Y),XL).
hasGeomJist([(chair, sG_Chair), (leg, sG_Leg), (base, sG Base), (peg, sG_Peg)]).
hasFeature(X,Y):- solidGeom(X), feature(Y), hasFeatureJist(XL), member((X,Y),XL).
hasFeatureChar(X,Y):- feature(X), featureChar(Y), hasFeatureChar_list(XL), member((X,Y),XL).
hasFeatureChar_list([(leg_Hole, ml), (leg_Hole, closed_Circular_Hole), (base_Hole, d2), (base_Hole,

d3), (base_Hole, sF2)]).
hasFeature_iist([(sG_Leg, leg_Hole), (sG_Base, base_Hole)]). _
hasMfgProcess(X,Y) :- feature(X), mfgProcess(Y), hasM^Process_list(XL), mem殮((X,Y),XL).
hasMfgProcess_list([]).
processedBy(X?V):- mf^Process(X), tool(Y), processedByJist(XL), member((X;Y),XL).
processed By_l i st([])•
attrValueOf(A, V):- attrValueJist(AL), member((A,V),AL).
attrValueJist([(safetyFactor, 10), (w3, 5),(w2, 50), (pSl, 5.3), (tl, 0.03), (rFl, 0.02), (ml, wood)]).

Axioms
subPartOf(X,Y):- part(X), part(Y), X \== Y, subPartO如ist(XL), member((XJY),XL).
subPartOf(X,Y):- subPartOf{X,Z), subPartOf^Z,Y).

SKD
sug응esjmf莒Method(FE, PR, T):- suggest_mfgProcessOfi；FE, PR), sugge야—mf百ToolOf(FE, PR, T).
suggesCmfgProcessOflJFE, PR):- feature(FE), featureType(FC), hasFeatureChar(FE, FC), FC ==

closed_Circular_Hole, mfgProcess(PR), PR = drilling,.
suggest_mf^ToolOf(FE, PR, T):- hasFeature(GE, FE), hasGeom(PA, GE), part(PA), material(M),

〜 hasPartChar(PA, M), attrValueOfi^M, wood), m^Process(PR), PR == drilling, tool(T), T 드

handDrill.
아ieck_at忙ValueORwl,Z) :- attrValueOf(w2, Zl), attrValueOf{w3, Z2), attrValueOf(safetyFactor, SF),

ground(Z), Z >= sqrt(Zl/Z2 * SF).
check_attrValueOfl；slackness,Z):- attrValueOf(tl,Xl), attrValueOf(rFI,X2),attrValueOf(pS 1 ,X3), Z is

(©.0*Xl-29.9*X2-0.06*X3+5.12). _____________________________

Fig. 7. Knowledge-Base in Pr아。응

Jaehyun Lee and Hyowon Suh Ontology-Based Multi-level Knowledge Framework for a Knowledge Management... 107

Related Axiom : The ir-reflexive axiom of a
"subPartof relation prohibits that the subPartOf
relation can not have two identical parts as
its domain and range.
subPartOf(X,Y): -part(X), part(Y), X \== Y ...
Related K-Map : The Rel function, subPartOf
(Pl, P2) :-part(Pl), part(P2), verifies whether
each arguments of 'subPartOf' is a part.
Related SKD : none.

Query 2 : (Example of the expert knowledge)
Query in English : What method is appropriate
for making a closed circ니lar hole of a 'leg'
part?
Query in Prolog : ?- suggest mfgMethod
(leg_Hole, PR, T). -
Answer : PR = drilling, T = handDrill.
Axioms : none.
K-Map : All inputs come from the Knowledge
Map. The Rel functions of all relations verify
weather each arguments are correct.
SKD : an expert knowledge, 'sugges匸m傍Method
(FE, PR, T):- suggest_mfgProcessOf(FE, PR),
suggest_mfgToolOf(FE, PR, T)「is utilized
to answer for the query 2.

Query 3 : (Example of the engineering function)
Query in English : How long is the width of
'leg' part?
Queiy in Prolog: ?- suggest^attr\^lueOf(wl ? X).
Answer : X = 10.
Axioms : The axiom serves the guarantee of
the knowledge map's integrity. Omitted.
K-Map :The role is like the role of K-Map
in q나ery 2. Omitted.
SKD : The following engineering function is
utilized; sugges匸attr、回ueORw^Z): -attrVhlueOf
(w2, Zl), attrValueOf(w3, Z2), attrA^lueOf
(safetyFactor, SF), gro니nd(Z), Z is sqrt(Zl/
Z2 * SF).

Query 4 : (Example of the data-analysis-based knowledge)
Query in English : What is the vahie of
'slackness' of the 'loose' failure?
Query in Prolog: ?-suggest_attrWlue Of
(slackness, X).
Answer : X = 5.014
Axioms : The axiom serves the guarantee of
the knowledge map's integrity. Omitted.
K-Map : The role is same like the role of K-
Map in queiy 2. Omitted.
SKD : The following data-analysis-based
knowledge is utilized;suggest attrValueOf
(slackness,Z):- attrValueOf(tl,XI), attrValueOf
(rF 1 ,X2),attrValueOfi：pS 1 ,X3), Z is (27.0*Xl
-29.9*X2-0.06*X3+5.12).

8. Conclusions

We suggested an Ontology-Based Multi-level Knowledge
Framework (OBMKF) fbr the systematic storing and
utilization of engineers5 knowledge in product development.
The reason this framework is an appropriate framework
of knowledge management is that it provides an
explicit and comprehensive knowledge structure in a
uniform representation for several aspects of domain
knowledge.

Although the framework has a structure which can
consistently represent information from fundamental
properties of concepts and relations to task-specific
knowledge, further research is still required to make it
a practical and commercial framework. We developed a
prototype and applied it to a simple prod니ct development.
Even though the framework has not yet been applied to
more complex products, we believe that it can be
applied. Therefore, we 아lould apply the OBMKF to a
practical example and find any problems that occur
when we extend the applied scope of the framework. In
addition, the framework needs to be integrated with an
inferencing mechanism to solve practical problems. An
XML-based representation of the framework is also
necessary for internet-based collaborative environments.
B니ilding an integrated prod니ct ontology and best
practice for the framework will encourage others to
focus on practical knowledge management iss니es.

References

[1] Alavi, M and Leidner DE, (2001), review: Knowledge
Management and Knowledge management Systems;
conceptual foundations and research issues, mis quaterly,
25(1), 107-136.

[2] Baader, F., Calvanese, D., Mcfiiinness, D.L., Nardi, D.
and Patel-s아meider, P.F., (2003), The description logic
handbook, Cambridge university press.

[3] Bock, C. and Gruninger, M., (2004), PSL: A Semantic
Domain for Flow Models, Software and Systems
Modeling Journal^ 4(2), 209-231.

[4] Borst, P., Akkermans, H., and Top, J., (1997), Engineering
ontologies, International journal of human-computer
studies^ 46(2/3), 365-406.

[5] Borgida, A., (1996), On the relative expressiveness of
description logics and predicate logies, Artificial Intelligence^
82, 353-367.

[6] Bozsak, E., Ehrig, M., Hands아luh, S., Hotho, A.,
Maedche, A., Motik, B., Oberle, D., Schmitz, C., Staab,
S. and Stojanovic, L. (2002), KAON - Towards a Large
Scale Semantic Web, Lecture notes in computer science^
2455, 304-313.

[7] Bratko, I. (2001), Prolog programming fbr artificial
intelligence, Pearson education, 57, ISBN-0201-40375-7.

[8] Corcho, O. and Perez, A.G (2000), A Roadmap to
Ontology Specification Languages, Lecture notes in
computer science, 1937, 80-96.

[9] Court, A.W. (1998), Issues fbr integrating knowledge in
new product development: reflections from an empirical
study, Knowledge-Based System, 11, 391-398.

108 International Journal of CAD/CAM Vol. 5, No. 1, pp. 99 〜109

[10] Cutkosky, M.R., Engelmore, R.S., Fikes, R.E.,
Genesereth, M.R., Gruber, T.R., Mark, W.S., Tenenbaum,
J. M. and Weber, J. C. (1993), PACT: An experiment in
integrating concurrent engineering systems, Computer,
26(1), 28-37.

[11] Farquhar, A., Fikes, R. and Rice, J., (1997), The Ontolingua
Server: a tool for collaborative ontology construction,
International journal of human-computer studies, 46(6),
707-727.

[12] Ferguson, E.S. (1992). Engineering and the Minds Eye,
MIT Press, Cambridge, MA.

[13] Guarino, N. (1997). Understanding, building and using
ontologies, International journal of human-computer
studies, 46(2/3), 293-310.

[14] Gruber, T.R. (1993), A Tran이ation Approach to Portable
Ontology Specifications, Knowledge Acquisition, 5, 199-
220.

[15] Heflin, J. February, (2004), OWL web ontology language
use cases and requirements, W3C Recommended, http://

 .org/TR/webont-req/.www.w3
[16] Heijst, G V., Sabina, F., Aineen, A. H., Guus S., and

Mario S., (1995), A case study in ontology library
construction, Artificial Intelligence in Medicine, 7, 227-
255.

[1 기 Kuffiier, T.A. and Ullman, D.G (1997), The information
requests of mechanical design engineers, Design Studies
12(1), 42-50.

[18] Kuokka, D. R., McGuire, J. G, Pelavin, R. N. and Weber,
J. C. (1994), SHADE: Technology for knowledge-based
collaborative engineering, Artificial intelligence in
collaborative design, 245-262.

[19] Lee, J.H. September, (2004),
OBMKF.html.

http://143.248.82.98/DEW05/

[2이 Lee, J.H. September, (2004), http://143.248.82.98/DEW05/
PROLOGhtml.

[21] Genesereth, M. R., Knowledge interchange format, http://

logic.stanfbrd.edu/kif7dpans.html.
[22] Gruninger, M., (1997), Integrated Ontologies for Enterprise

Modeling, Enterprise, integration and modeling technology,
I, 368-377.

[23] Matheus, C. J., Kokar, M. M., Baclawski, K., and Letkowski,
J. (2003), Constructing RuleML-Based Domain Theories
on Top of OWL, Ontologies Lecture notes in computer
science, 2876, 81 -94.

[24] Russel, S. and Norvig, P. (1995), Artificial Intelligence,
2nd edition, Prentice Hall, 272-315.

[25] Staab, S. and Maedche, A. (2000), Axioms are objects,
too: Ontology Engineering Beyond the Modeling of
Concepts and Relations, Workshop on Ontologies and
Problem-Solving Methods, Berlin.

[26] Stauffer, L.A. and Ullman, D.G (1991), Fundamental
process of mechanical designers based on empirical data,
Journal of Engineering Design, 2, 113-125.

[27] Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R.,
and Wenke, D. (2002), OntoEdit: Collaborative Ontology
Development for the Semantic Web, Lecture notes in
computer science, 2342, 221-235.

[28] Syan, C.S. and Menon, U. (1994), Concurrent Engineering:
Concepts, implementation and practice, Chapman & Hall.

[29] Vincenti, W.G (1990), What engineers know and how
they know it: analytical studies fijom aeronautical
engineering, John Hopkins University Press.

[30] Volz, R., Decker, S., and Oberle, D. (2003), Bubo -
Implementing OWL in rule-based systems. WWW2003
May 20-24, Bupest, Hungary.

[31] Yoshioka, M. and Tomiyama T. (1997), Pluggable
metamodel mechanism: A framework of an integrated
design object modelling environment, Computer Aided
Conceptual Design '97, Proceedings of the 1997
Lancaster International Workshop on Engineering Design
CACDf97, Lancaster University, 57-70.

http://www.w3
http://143.248.82.98/DEW05/
http://143.248.82.98/DEW05/

Jaehyun Lee and Hyowon Suh Ontology-Based Multi-level Knowledge Framework for a Knowledge Management... 109

Jaehyun Lee is a Ph.D. candidate in concurrent engineering
laboratory, department of industrial engineering, at Korea
Advanced Institute of Science and Technology (KAIST). His
research interests include product lifecycle management,
ontology application to product development knowledge, and
semantic web.

Hyowon Suh received the Ph.D. in the department of
industrial engineering from West Virginia University, USA, in
1991. He had worked for Korea Institute of Industrial
Technology (KITECH) from 1992 to 1995. He is a professor in
the department of industrial engineering at KAIST since 1996.
His research interests include CE/PDM/CPC/PLM, business
process management/workflow management, and ontology/
knowledge-based system.

Jaehyun Lee 너yowon Suh

