• 제목/요약/키워드: Online social networks

Search Result 175, Processing Time 0.024 seconds

An analysis study on the quality of article to improve the performance of hate comments discrimination (악성댓글 판별의 성능 향상을 위한 품사 자질에 대한 분석 연구)

  • Kim, Hyoung Ju;Min, Moon Jong;Kim, Pan Koo
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.71-79
    • /
    • 2021
  • One of the social aspects that changes as the use of the Internet becomes widespread is communication in online space. In the past, only one-on-one conversations were possible remotely, except when they were physically in the same space, but nowadays, technology has been developed to enable communication with a large number of people remotely through bulletin boards, communities, and social network services. Due to the development of such information and communication networks, life becomes more convenient, and at the same time, the damage caused by rapid information exchange is also constantly increasing. Recently, cyber crimes such as sending sexual messages or personal attacks to certain people with recognition on the Internet, such as not only entertainers but also influencers, have occurred, and some of those exposed to these cybercrime have committed suicide. In this paper, in order to reduce the damage caused by malicious comments, research a method for improving the performance of discriminate malicious comments through feature extraction based on parts-of-speech.

Media Habits of Sensation Seekers (감지추구자적매체습관(感知追求者的媒体习惯))

  • Blakeney, Alisha;Findley, Casey;Self, Donald R.;Ingram, Rhea;Garrett, Tony
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.179-187
    • /
    • 2010
  • Understanding consumers' preferences and use of media types is imperative for marketing and advertising managers, especially in today's fragmented market. A clear understanding assists managers in making more effective selections of appropriate media outlets, yet individuals' choices of type and use of media are based on a variety of characteristics. This paper examines one personality trait, sensation seeking, which has not appeared in the literature examining "new" media preferences and use. Sensation seeking is a personality trait defined as "the need for varied, novel, and complex sensations and experiences and the willingness to take physical and social risks for the sake of such experiences" (Zuckerman 1979). Six hypotheses were developed from a review of the literature. Particular attention was given to the Uses and Gratification theory (Katz 1959), which explains various reasons why people choose media types and their motivations for using the different types of media. Current theory suggests that High Sensation Seekers (HSS), due to their needs for novelty, arousal and unconventional content and imagery, would exhibit higher frequency of use of new media. Specifically, we hypothesize that HSS will use the internet more than broadcast (H1a) or print media (H1b) and more than low (LSS) (H2a) or medium sensation seekers (MSS) (H2b). In addition, HSS have been found to be more social and have higher numbers of friends therefore are expected to use social networking websites such as Facebook/MySpace (H3) and chat rooms (H4) more than LSS (a) and MSS (b). Sensation seekers can manifest into a range of behaviors including disinhibition,. It is expected that alternative social networks such as Facebook/MySpace (H5) and chat rooms (H6) will be used more often for those who have higher levels of disinhibition than low (a) or medium (b) levels. Data were collected using an online survey of participants in extreme sports. In order to reach this group, an improved version of a snowball sampling technique, chain-referral method, was used to select respondents for this study. This method was chosen as it is regarded as being effective to reach otherwise hidden population groups (Heckathorn, 1997). A final usable sample of 1108 respondents, which was mainly young (56.36% under 34), male (86.1%) and middle class (58.7% with household incomes over USD 50,000) was consistent with previous studies on sensation seeking. Sensation seeking was captured using an existing measure, the Brief Sensation Seeking Scale (Hoyle et al., 2002). Media usage was captured by measuring the self reported usage of various media types. Results did not support H1a and b. HSS did not show higher levels of usage of alternative media such as the internet showing in fact lower mean levels of usage than all the other types of media. The highest media type used by HSS was print media, suggesting that there is a revolt against the mainstream. Results support H2a and b that HSS are more frequent users of the internet than LSS or MSS. Further analysis revealed that there are significant differences in the use of print media between HSS and LSS, suggesting that HSS may seek out more specialized print publications in their respective extreme sport activity. Hypothesis 3a and b showed that HSS use Facebook/MySpace more frequently than either LSS or MSS. There were no significant differences in the use of chat rooms between LSS and HSS, so as a consequence no support for H4a, although significant for MSS H4b. Respondents with varying levels of disinhibition were expected to have different levels of use of Facebook/MySpace and chat-rooms. There was support for the higher levels of use of Facebook/MySpace for those with high levels of disinhibition than low or medium levels, supporting H5a and b. Similarly there was support for H6b, Those with high levels of disinhibition use chat-rooms significantly more than those with medium levels but not for low levels (H6a). The findings are counterintuitive and give some interesting insights for managers. First, although HSS use online media more frequently than LSS or MSS, this groups use of online media is less than either print or broadcast media. The advertising executive should not place too much emphasis on online media for this important market segment. Second, social media, such as facebook/Myspace and chatrooms should be examined by managers as potential ways to reach this group. Finally, there is some implication for public policy by the higher levels of use of social media by those who are disinhibited. These individuals are more inclined to engage in more socially risky behavior which may have some dire implications, e.g. by internet predators or future employers. There is a limitation in the study in that only those who engage in extreme sports are included. This is by nature a HSS activity. A broader population is therefore needed to test if these results hold.

Relationship between Digital Informatization Capability, Digital Informatization Accessability and Life Satisfaction of Disabled People: Multigroup Analysis of Perceived Social Support Network (장애인의 디지털정보화역량, 디지털정보화활용 수준, 일상생활만족도 간 관계: 지각된 사회적 지지망 수준에 따른 다집단 분석)

  • Yeon, Eun Mo;Choi, Hyo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.636-644
    • /
    • 2019
  • The purpose of this study is to explore practical intervention strategies by identifying the relationships among digital informatization capacity, level of digital informatization accessability and life satisfaction of disabled people and to determine differences among these relationships depending on perceived level of social support networks. The participants were 1,639 disabled people from the 2017 digital information gap survey and the results, based on structural equation modeling and multi-group analysis, are as follows. First, digital informatization capacity has a positive influence on the level of digital informatization accessability(β=.65), and life satisfaction(β=.08). The level of digital informatization accessability also has positive influence on life satisfaction(β=.44). Second, the analysis result of the mediated effects of digital informatization accessability level between digital informatization capacity and life satisfaction was significant at a level (β=.29) even greater than the direct effect of digital informatization capacity on life satisfaction. Third, digital information capacity and digital informatization accessability have an influence on life satisfaction regardless of their perceived level of social support. The findings suggest that creating online environments where disabled people can enjoy leisure, culture, and social interaction with high accessibility and utility are as important as providing education for improving their digital informatization capacity.

A Study on Development of Measurement Tools for Word-of-Mouth Constraint Factors - Focusing on SNS Advertising - (구전 제약요인 측정도구 개발에 대한 연구 - SNS 광고를 중심으로 -)

  • Yun, Dae-Hong
    • Management & Information Systems Review
    • /
    • v.38 no.2
    • /
    • pp.209-223
    • /
    • 2019
  • The purpose of this study was to stimulate the online word-of-mouth advertising by developing the concept of word-of-mouth constraint factors and measurement tools in connection with the SNS advertising on social networks. To achieve the objective of this study, this study was conducted in 3 phases. First, the exploratory investigation(target group interview, in-depth interview, and expert interview) was performed to determine the concept and scope of the word-of-mouth constraint based on literature study and qualitative investigation method. Second, the reliability and validity of the measurement questions were verified through the survey in order to refine the developed measurement items. Third, the predictive validity of measurement items was verified by examining the relationship with other major construct concept for which the developed measurement items were different. Based on the results of study, 6 components and a total of 23 measurement questions for those components were derived. Each was called intrapersonal and interpersonal constraint(psychological sensitivity, compensatory sensitivity, and other person assessment), structural constraint(reliability, informativity, and entertainment). We developed the measurement questions related to word-of-mouth constraint based on qualitative study and quantitative study and holistically examined the social and psychological, environmental interruption factors acting as the word-of-mouth constraint factors for SNS advertising in terms of SNS achievements and evaluation from the perspective of word-of-mouth constraint. The results will lead to creation of basic framework for systematic and empirical research on the online word-of-mouth constraint and to achievement of effective SNS word-of-mouth advertising.

An Analysis of IT Trends Using Tweet Data (트윗 데이터를 활용한 IT 트렌드 분석)

  • Yi, Jin Baek;Lee, Choong Kwon;Cha, Kyung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.143-159
    • /
    • 2015
  • Predicting IT trends has been a long and important subject for information systems research. IT trend prediction makes it possible to acknowledge emerging eras of innovation and allocate budgets to prepare against rapidly changing technological trends. Towards the end of each year, various domestic and global organizations predict and announce IT trends for the following year. For example, Gartner Predicts 10 top IT trend during the next year, and these predictions affect IT and industry leaders and organization's basic assumptions about technology and the future of IT, but the accuracy of these reports are difficult to verify. Social media data can be useful tool to verify the accuracy. As social media services have gained in popularity, it is used in a variety of ways, from posting about personal daily life to keeping up to date with news and trends. In the recent years, rates of social media activity in Korea have reached unprecedented levels. Hundreds of millions of users now participate in online social networks and communicate with colleague and friends their opinions and thoughts. In particular, Twitter is currently the major micro blog service, it has an important function named 'tweets' which is to report their current thoughts and actions, comments on news and engage in discussions. For an analysis on IT trends, we chose Tweet data because not only it produces massive unstructured textual data in real time but also it serves as an influential channel for opinion leading on technology. Previous studies found that the tweet data provides useful information and detects the trend of society effectively, these studies also identifies that Twitter can track the issue faster than the other media, newspapers. Therefore, this study investigates how frequently the predicted IT trends for the following year announced by public organizations are mentioned on social network services like Twitter. IT trend predictions for 2013, announced near the end of 2012 from two domestic organizations, the National IT Industry Promotion Agency (NIPA) and the National Information Society Agency (NIA), were used as a basis for this research. The present study analyzes the Twitter data generated from Seoul (Korea) compared with the predictions of the two organizations to analyze the differences. Thus, Twitter data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. To overcome these challenges, we used SAS IRS (Information Retrieval Studio) developed by SAS to capture the trend in real-time processing big stream datasets of Twitter. The system offers a framework for crawling, normalizing, analyzing, indexing and searching tweet data. As a result, we have crawled the entire Twitter sphere in Seoul area and obtained 21,589 tweets in 2013 to review how frequently the IT trend topics announced by the two organizations were mentioned by the people in Seoul. The results shows that most IT trend predicted by NIPA and NIA were all frequently mentioned in Twitter except some topics such as 'new types of security threat', 'green IT', 'next generation semiconductor' since these topics non generalized compound words so they can be mentioned in Twitter with other words. To answer whether the IT trend tweets from Korea is related to the following year's IT trends in real world, we compared Twitter's trending topics with those in Nara Market, Korea's online e-Procurement system which is a nationwide web-based procurement system, dealing with whole procurement process of all public organizations in Korea. The correlation analysis show that Tweet frequencies on IT trending topics predicted by NIPA and NIA are significantly correlated with frequencies on IT topics mentioned in project announcements by Nara market in 2012 and 2013. The main contribution of our research can be found in the following aspects: i) the IT topic predictions announced by NIPA and NIA can provide an effective guideline to IT professionals and researchers in Korea who are looking for verified IT topic trends in the following topic, ii) researchers can use Twitter to get some useful ideas to detect and predict dynamic trends of technological and social issues.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

Enrichment of POI information based on LBSNS (위치기반 소셜 네트워크 서비스(LBSNS)를 이용한 POI 정보 강화 방안)

  • Cho, Sung-Hwan;Ga, Chil-O;Huh, Yong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.109-119
    • /
    • 2018
  • Point of interest (POI) of the city is a special place that has what importance to the user. For example, it is such landmark, restaurants, museums, hotels, and theaters. Because of its role in the social and economic life of us, these have attracted a lot of interest in location-based applications such as social networks and online map. However, while it can easily be obtained through the Web, the basic information of POI such as geographic location, another effort is required to obtain detailed information such as Wi-Fi, accepting credit cards, opening hours, romper room and the assessment and evaluation of other users. To solve these problems, a new method for correcting position error is required to link location-based social network service (LBSNS) data and POIs. This paper attempts to propose a position error correction method of POI and LBSNS data to enrich POI information from the vast information that is accumulated in LBSNS. Through this study, we can overcome the limitation of individual POI information via the information fusion method of LBSNS and POI, and we have discovered the possibility to be able to provide additional information which users need. As a result, we expect to be able to collect a variety of POI information quickly.

An Analysis on the Participation Factors of Volunteer Activities for Life Care and Wellness of the Elderly (노인의 라이프케어와 웰니스를 위한 자원봉사활동 참여요인 분석)

  • Kim, Hee-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.269-278
    • /
    • 2021
  • This study was inteded to include online social relations and ability use information and communication devices to analyze the elderly's participation in volunteer activities and provide basic data to identify the elderly's participation in volunteer activities. The statistical data of the 2017 National survey of Senior Citizen, only 10,073 people aged 65 or older were sampled out of 10,299 people. The participation rate of volunteering was frequently analyzed, and the difference in participation in volunteer according to the factors was Chi-square analysis and One-way variance analysis. A polynomial regression analysis was conducted to identify the effect factors of participation in volunteering. As a results. 3.9% of older adults are volunteering and 11.5% are experienced in the past. Participation in volunteer activity differed significantly depending on age, education level, economic level, subjective health, body function, ability use information and communication devices, social networks, frequency of face-to-face contact and frequency of non face contact. In the regression analysis, utilization of communication and device, social networking, face to face contact frequency were show to be the effect factors. In order to promote elderly's participation in volunteer activities, consideration of related resources reported in prior studies, social relations, frequency of face-to-face contact and ability to use information and communication devices is considered important.

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.