• Title/Summary/Keyword: One-step iteration process

Search Result 6, Processing Time 0.023 seconds

COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS BY ONE-STEP ITERATION PROCESS IN CONVEX METRIC SPACES

  • Abbas, Mujahid;Khan, Safeer Hussain;Kim, Jong-Kyu
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.693-702
    • /
    • 2010
  • We study one-step iteration process to approximate common fixed points of two nonexpansive mappings and prove some convergence theorems in convex metric spaces. Using the so-called condition (A'), the convergence of iteratively defined sequences in a uniformly convex metric space is also obtained.

A Design Process Analysis with the DSM and the QFD in Automatic Transmission Lever Design (DSM과 QFD 분석을 이용한 오토레버 설계 과정의 분석)

  • 천준원;박지형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.9-12
    • /
    • 2003
  • This paper describes a step-by-step method to minimize design iterations in a process of product design change. In the design process, two components are coupled if a change of a component can require the other components change, and design iterations are generated by the coupling. The design iteration is one of main factors that increase design effort. In this study, three matrices are used to solve the design iteration of automatic transmission lever, Requirement-Engineering matrix, Engineering-Components matrix, and DSM(Design Structure Matrix). Firstly, with the DSM, the product architecture and conceptual design process are proposed from product function analysis. Secondly, with the QFD, the Requirement-Engineering matrix and Engineering-Components matrix present the relationship among customer requirements, engineering issues, and product components. Lastly, the results of the QFD analysis are used in the DSM to solve the component interactions and to provide design

  • PDF

Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes

  • Tian, Li-Min;Hao, Ji-Ping
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1197-1214
    • /
    • 2015
  • There is a great difference in mechanical behavior between design model one-time loading and step-by-step construction process. This paper presents practical computational methods for simulating the structural behavior of long-span rigid steel structures during construction processes. It introduces the positioning principle of node rectification for installation which is especially suitable for rigid long-span steel structures. Novel improved nonlinear analytical methods, known as element birth and death of node rectification, are introduced based on several calculating methods, as well as a forward iteration of node rectification method. These methods proposed in this paper can solve the problem of element's 'floating' and can be easily incorporated in commercial finite element software. These proposed methods were eventually implemented in the computer simulation and analysis of the main stadium for the Universiade Sports Center during the construction process. The optimum construction scheme of the structure is determined by the improved algorithm and the computational results matched well with the measured values in the project, thus indicating that the novel nonlinear time-varying analysis approach is effective construction simulation of complex rigid long-span steel structures and provides useful reference for future design and construction.

Unified Analytic Calculation Method for Zoom Loci of Zoom Lens Systems with a Finite Object Distance

  • Ryu, Jae Myung;Oh, Jeong Hyo;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.134-145
    • /
    • 2014
  • The number of lens groups in modern zoom camera systems is increased above that of conventional systems in order to improve the speed of the auto focus with the high quality image. As a result, it is difficult to calculate zoom loci using the conventional analytic method, and even the recent one-step advanced numerical calculation method is not optimal because of the time-consuming problem generated by the iteration method. In this paper, in order to solve this problem, we suggest a new unified analytic method for zoom lens loci with finite object distance including infinite object distance. This method is induced by systematically analyzing various distances between the object and other groups including the first lens group, for various situations corresponding to zooming equations of the finite lens systems after using a spline interpolation for each lens group. And we confirm the justification of the new method by using various zoom lens examples. By using this method, we can easily and quickly obtain the zoom lens loci not only without any calculation process of iteration but also without any limit on the group number and the object distance in every zoom lens system.

Application of the Implicit Restarted Arnoldi Method to the Small-Signal Stability of Power Systems

  • Kim, Dong-Joon;Moon, Young-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.428-433
    • /
    • 2007
  • This paper describes the new eigenvalue algorithm exploiting the Implicit Restarted Arnoldi Method (IRAM) and its application to power systems. IRAM is a technique for combining the implicitly shifted mechanism with a k-step Arnoldi factorization to obtain a truncated form of the implicitly shifted QR iteration. The numerical difficulties and storage problems normally associated with the Arnoldi process are avoided. Two power systems, one of which has 36 state variables and the other 150 state variables, have been tested using the ARPACK program, which uses IRAM, and the eigenvalue results are compared with the results obtained from the conventional QR method.

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF