• Title/Summary/Keyword: One-phase fluid

Search Result 200, Processing Time 0.024 seconds

CFD Code Development for a Two-phase Flow with an Interfacial Area Transport Equation (계면면적 수송방정식을 적용한 이상유동 해석코드 개발)

  • Bae, B.U.;Yoon, H.Y.;Euh, D.J.;Song, C.H.;Park, G.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2696-2701
    • /
    • 2007
  • For the analysis of a two-phase flow, the interaction between two phases such as the interfacial momentum or heat transfer is proportional to the interfacial area. So the interfacial area concentration (IAC) is one of the most important parameters governing the behavior of each phase. This study focuses on the development of a computational fluid dynamics (CFD) code for investigating a boiling flow with a one-group IAC transport equation. It was based on the two-fluid model and governing equations were calculated by SMAC algorithm. For checking the robustness of the developed code, the experiment of a subcooled boiling in a vertical annulus channel was analyzed to validate the capability of the IAC transport equation. As the results, the developed code was confirmed to have the capability in predicting multi-dimensional phenomena of vapor generation and propagation in a subcooled boiling.

  • PDF

Stratified Steady and Unsteady Two-Phase Flows Between Two Parallel Plates

  • Sim Woo-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.125-132
    • /
    • 2006
  • To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated.

Change of Protein Patterns in Uterine Fluid during Estrus Cycle in Pigs (돼지에서 발정 주기 동안 자궁액 내의 단백질 패턴의 변화)

  • Lee, Yeon-Ju;Song, Eun-Ji;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.37 no.3
    • /
    • pp.103-108
    • /
    • 2013
  • An uterus is female reproductive tract organ that affected estrus cycle. During a various changes occur at uterus in estrus cycle, one of them is body fluids secretion be called uterine fluid. Therefore, the objective of this study was to investigate the changes of protein patterns using two-dimensional gel electrophoresis in uterus fluids during the follicular and luteal phases in estrus cycle of pigs. In changes of protein spots were confirmed during the follicular and luteal phases. The 136 spots were expressed in follicular phase, the 57 spots of them showed reproducibility. On the other hand, the 140 spots were expressed in luteal phase, the 73 spots of them showed reproducibility. Also, spots expressed in follicular phase were number 69 and 94 spots and spots expressed in luteal phase only were number 156, 157, 184~187, 190 and 191 spots. The spots which of higher expression levels in the luteal phase than in follicular phase were number 76 and 79 spots. In conclusion, the spots expressed in follicular and luteal phases were confirmed with difference levels and these differences are function of RNA resolving, protein synthesis and cytoskeletal architecture.

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test (지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

  • PDF

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF

Resource recovery and harmless treatment of waste oil-in-water drilling fluid

  • Tang, Chao;Xie, Shui Xiang
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.277-280
    • /
    • 2017
  • Destablization and demulsification is a difficult task for the treatment of waste oil-in-water drilling fluid because of its "three-high" characteristics: emulsification, stabilization and oiliness. At present, China is short for effective treating technology, which restricts cleaner production in oilfield. This paper focused on technical difficulties of waste oil-in-water drilling fluid treatment in JiDong oilfield of China, adopting physical-chemical collaboration demulsification technology to deal with waste oil-in-water drilling fluid. After oil-water-solid three-phase separation, the oil recovery rate is up to 90% and the recycled oil can be reused for preparation of new drilling fluid. Meanwhile, harmless treatment of wastewater and sludge from waste oil-in-water drilling fluid after oil recycling was studied. The results showed that wastewater after treated was clean, contents of chemical oxygen demand and oil decreased from 993 mg/L and 21,800 mg/L to 89 mg/L and 3.6 mg/L respectively, which can meet the requirements of grade one of "The National Integrated Wastewater Discharge Standard" (GB8978); The pollutants in the sludge after harmless treatment are decreased below the national standard, which achieved the goal of resource recovery and harmless treatment on waste oil-in-water drilling fluid.

Effects of Acoustic Resonance and Volute Geometry on Phase Resonance in a Centrifugal Fan

  • Tsujimoto, Yoshinobu;Tanaka, Hiroshi;Doerfler, Peter;Yonezawa, Koichi;Suzuki, Takayuki;Makikawa, Keisuke
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.75-86
    • /
    • 2013
  • The effects of acoustic resonance and volute geometry on phase resonance are studied theoretically and experimentally using a centrifugal fan. One dimensional theoretical model is developed taking account of the reflection from the discharge pipe end. It was found that the phase resonance occurs, even with the effects of acoustic resonance, when the rotational speed of rotor-stator interaction pattern agrees with the sound velocity. This was confirmed by experiments with and without a silencer at the discharge pipe exit. The pressure wave measurements showed that there are certain effects of the cross-sectional area change of the volute which is neglected in the one dimensional model. To clarify the effects of area change, experiments were carried out by using a ring volute with a constant area. It was demonstrated that the phase resonance occurs for both interaction modes travelling towards/away from the volute. The amplitude of travelling wave grows towards the volute exit for the modes rotating towards the volute exit, in the same direction as the impeller. However, a standing wave is developed in the volute for the modes rotating away from the volute exit in the opposite direction as the impeller, as a result of the interaction of a growing wave while travelling towards the tongue and a reflected wave away from the tongue.

Modeling of Nozzle Flow Inside a Y-JET Twin-Fluid Atomizer (Y-JET 2-유체 분무노즐 내부유동의 모델링)

  • In, Wang-Kee;Lee, Sang-Yong;Song, Si-Hong
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1841-1850
    • /
    • 1993
  • A simplified one-dimensional analysis has been performed to predict the local pressure distributions in Y-Jet twin-fluid atomizers. Fluid compressibility was considered both in the gas(air) and two-phase(mixing) ports. The annular-mist flow model was adopted to analyze the flow in the mixing port. A series of experiments also has been performed; the results show that the air flow rate increases and the liquid flow rate decreases with the increase of the air injection pressure and/or with the decrease of the liquid injection pressure. From the measured injection pressures and flow rates, the appropriate constants for the correlations of the pressure loss coefficients and the rate of drop entrainment were decided. The local pressures inside the nozzle by prediction reasonably agree with those by the experiments.

Numerical Analysis on Cavitation of Centrifugal Pump (원심펌프의 캐비테이션에 대한 수치해석)

  • Kim, Myung-Jin;Jin, Hyun-Bae;Son, Chang-Ho;Chung, Wui-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.27-34
    • /
    • 2013
  • As the operating range of centrifugal pump is expanded recently, the various suction conditions are demanded. The most important problem in the suction conditions is cavitation. In this study, to analyze the characteristics for such the cavitation, first the validity of the numerical analysis was certified through comparison with the experimental result of performance curve according to flow rate for the industrial centrifugal pump. At this time, the transient numerical analysis for the full type model of the centrifugal pump was performed to get more accurate results. The numerical analysis on the cavitation of centrifugal pump were conducted on the two-phase flow as the same method of one-phased flow.

Experimental and computational study on fluid flow-solid particles interaction associated with entrainment behavior of the particles in the industrial furnaces (산업용 로 내 고체 미립자의 거동 예측을 위한 유동-고체입자 간 비산에 관한 실험과 해석)

  • Lee, Hookyung;Eum, Minje;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.93-96
    • /
    • 2012
  • In the industrial furnaces or reactors, entrainment of the material particles is one of the important issues from the point of view of efficient material-use. The particles of solid phase which has submicron unit are easily entrained with gas phase as a reacting agent or product, and it causes a loss of the material. In this study, wind-tunnel experiment is carried out to interpret the distribution of the particles entrained along the tunnel length. Through CFD-based computational analysis of the experiment, availability of result from the CFD analysis associated with particle size distribution and gaseous velocity to practical system is evaluated.

  • PDF