• Title/Summary/Keyword: One-dimensional simulations

Search Result 299, Processing Time 0.02 seconds

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

Comparison of flood inundation simulation between one- and two-dimensional numerical models for an emergency action plan of agricultural reservoirs

  • Kim, Jae Young;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha;Lee, Dae Eop
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.515-526
    • /
    • 2021
  • The frequency of typhoons and torrential rainfalls has increased due to climate change, and the concurrent risk of breakage of dams and reservoirs has increased due to structural aging. To cope with the risk of dam breakage, a more accurate emergency action plan (EAP) must be established, and more advanced technology must be developed for the prediction of flooding. Hence, the present study proposes a method for establishing a more effective EAP by performing flood and inundation analyses using one- and two-dimensional models. The probable maximum flood (PMF) under the condition of probable maximum precipitation (PMP) was calculated for the target area, namely the Gyeong-cheon reservoir watershed. The breakage scenario of the Gyeong-cheon reservoir was then built up, and breakage simulations were conducted using the dam-break flood forecasting (DAMBRK) model. The results of the outflow analysis at the main locations were used as the basis for the one-dimensional (1D) and two-dimensional (2D) flood inundation analyses using the watershed modeling system (WMS) and the FLUvial Modeling ENgine (FLUMEN), respectively. The maximum inundation area between the Daehari-cheon confluence and the Naeseong-cheon location was compared for each model. The 1D flood inundation analysis gave an area of 21.3 km2, and the 2D flood inundation analysis gave an area of 21.9 km2. Although these results indicate an insignificant difference of 0.6 km2 in the inundation area between the two models, it should be noted that one of the main locations (namely, the Yonggung-myeon Administrative and Welfare Center) was not inundated in the 1D (WMS) model but inundated in the 2D (FLUMEN) model.

A Study on the Combustion Characteristics of Spark Ignition Engine by the Thermodynamic Properties Model (열역학적 물성치 모델에 의한 스파크 점화기관의 연소특성에 관한 연구)

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.75-80
    • /
    • 2014
  • The past several years have seen a substantial growth in mathematical modeling activities whose interests are to describe the performance, efficiency and emissions characteristics of various types of internal combustion engines. The key element in these simulations of various aspects of engine operation is the model of the engine combustion process. Combustion models are then classified into three categories: zero-dimensional, quasi-dimensional and multidimensional models. zero-dimensional models are built around the first law of thermodynamics, and time is the only independent variable. This paper presents a introduction to the combustion characteristics of a spark ignition combustion modeling by zero-dimensional model.

Modified Trench MOS Barrier Schottky (TMBS) Rectifier

  • Moon Jin-Woo;Choi Yearn-Ik;Chung Sang-Koo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.2
    • /
    • pp.58-62
    • /
    • 2005
  • A trench MOS barrier Schottky (TMBS) rectifier is proposed which utilizes the upper half of the trench sidewall as an active area. The proposed structure improves the forward voltage drop by 20$\%$ in comparison with the conventional one without degradation in breakdown voltage. An analytical model for the field distribution is given and compared with two-dimensional numerical simulations.

Numerical Simulation and Laboratory Test Analysis of Air Sparging for TCE Remediation

  • 김훈미;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.348-351
    • /
    • 2003
  • Trichloroethylene, which is one of the representative DNAPL, has been found in underground water sources as a result of the manufactural use, and disposal of the chemical. In this research, in situ air sparging method was chosen to reduce the TCE concentration from the source zone. The concentration reduction in the source zone resulting from air sparging is simulated using the modified STOMP Water-Air operational mode in a two dimensional axisymmetric domain and bench scale test is conducted to analyze the performance of air sparging. The results of laboratory tests are compared with numerical simulations.

  • PDF

Prediction of Temporal Variation of Son Concentrations in Rainwater (산성비 모델을 이용한 시간별 강우성분 예측)

  • 김순태;홍민선;문수호;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.191-204
    • /
    • 2003
  • A one dimensional time dependent acid rain model considering size distribution of aerosols and hydrometeors is developed to predict observed chemical and physical properties of precipitation. Temporal variations of anions and cations observed are predicted fairly well with acid rain model simulations. It is found that aerosol depletion rates are highly dependent on aerosol sizes under the assumption of Marshall - Palmer raindrop size distribution. Also, the aerosol depletion during the initial rain event largely influences on ion concentrations in rainwaters.

Unsteady Electroosmotic Channel Flows with the Nonoverlapped and Overlapped Electric Double Layers

  • Kang, Sang-Mo;Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2250-2264
    • /
    • 2006
  • In micro- and nanoflows, the Boltzmann distribution is valid only when the electric double layers (EDL's) are not overlapped and the ionic distributions establish an equilibrium state. The present study has numerically investigated unsteady two-dimensional fully-developed electroosmotic flows between two parallel flat plates in the nonoverlapped and overlapped EDL cases, without any assumption of the Boltzmann distribution. For the study, two kinds of unsteady flows are considered: one is the impulsive application of a constant electric field and the other is the application of a sinusoidally oscillating electric field. For the numerical simulations, the ionic-species and electric-field equations as well as the continuity and momentum ones are solved. Numerical simulations are successful in accurately predicting unsteady electroosmotic flows and ionic distributions. Results show that the nonoverlapped and overlapped cases are totally different in their basic characteristics. This study would contribute to further understanding unsteady electroosmotic flows in micro- and nanofluidic devices.

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 2. Global Strain Rate

  • Park, Woe Chul
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • In Part 1, the flame structure of the counterflow nonpremixed flames computed by using Fire Dynamics Simulator was compared with that of OPPDIF for different concentrations of methane in the fuel stream. In this study, comparisons were made for the global strain rate that is an important parameter for diffusion flames for further evaluation of FDS. At each of the three fuel concentrations, $20% CH_4+ 80% N_2, 50% CH_4 + 50% N_2, 90% CH_4 + 10% N_2$ in the fuel stream, the temperature and axial velocity profiles were investigated for the global strain rate in the range from 20 to $100s^{-1}$. Changes in flame thickness and radius were also compared with OPPDIF. There was good agreement in the temperature and axial velocity profiles between the axisymmetric simulations and the one-dimensional computations except for the regions where the flame temperature reach its peak and the axial velocity rapidly changes. The simulations of the axisymmetric flames with FDS showed that the flame thickness decreases and the flame radius increases with increasing global strain rate.

A Study on the Suspended Sediment Transport in the Nakdong Estuary (낙동강 하구에서의 부유사 거동에 관한 연구)

  • 김재중;김기철;이정만
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.120-131
    • /
    • 1995
  • Numerical simulations on the suspended sediment transport in the Nakdong Estuary are carried out Uncoupled flow model and diffusion model of which the governing equations are two-dimensional depth integrated equations are used int his study. Four cases are tested in this numerical simulations in which the Gaduk waterway open boundary condition and Nakdong Estuary barrage boundary condition are considered as the boundary conditions. The simulated results are compared with the measured data which were obtained by NEDECO at hadan site on 1981.2.19. and by Dong-A university at one station in the study area on 1993.4.3. and show a good agreement with them. The construction of the Nakdong Estuary Barrage may affect to reduce the current near Jinudo an Daemadeung and the suspended sediment inflowed from the upstream in the wet season seems to be transported to the Dadae.

  • PDF

The Relation Between Magnetic Field Configuration And The Flux Expansion Factor

  • Lee, Hwan-Hee;Magara, Tetsuya;An, Jun-Mo;Kang, Ji-Hye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.85.1-85.1
    • /
    • 2012
  • In this study we use three-dimensional magnetohydrodynamic simulations of flux emergence from solar subsurface layer to corona. In order to study the twist parameter of magnetic field we compare the simulations for strongly twisted and weakly twisted cases. Based on the results, we derive a flux expansion factor of selected flux tubes which is a ratio of expanded cross section to the one measured at the footpoint of the flux tube. To understand the effect of flux expansion factor, we make a comparison between magnetic field configuration and the expansion factor. By using a fitting function of hyperbolic tangent we derive noticeable correlations among the strength of the vertical magnetic field, current density and expansion factor. We discuss what these results tell about the relationship between the twist of emerging field and the mechanism for the solar wind.

  • PDF