• 제목/요약/키워드: One-dimensional model

검색결과 2,213건 처리시간 0.024초

수종의 치과용 스캐너로 채득된 3차원 치아 모형의 반복측정 안정성 평가 연구 (A Study on the Evaluation of Repeated Measurement Stability of 3D Tooth Model Obtained by Several Dental Scanners)

  • 배은정;김원수;임중연
    • 한국콘텐츠학회논문지
    • /
    • 제21권5호
    • /
    • pp.996-1003
    • /
    • 2021
  • 연구의 목적은 치과용 스캐너의 반복측정 안정성 비교를 통해 영향을 미치는 스캐너의 요소를 평가하는 것이다. 연구 목적을 달성하고자 청색광을 사용하는 I사의 스캐너와 광학 방식을 사용하는 Z사의 스캐너 그리고 백색광을 사용하는 D사의 스캐너를 본 연구의 반복측정 안정성 연구에 사용하였다. 측정 결과는 root mean square (RMS)로 계산하였고 one-way ANOVA 통계기법을 적용하여 유의수준을 확인하였다(𝛼=.05). 통계분석 결과 가장 큰 RMS 값을 가지는 스캐너는 Z-opt 그룹으로 38.2 ㎛이었다. 다음으로는 D-white가 35.2 ㎛로 나타났고, 가장 RMS 값이 적은 그룹은 I-blue 그룹으로 34.1 ㎛이었다. 각 그룹간에 RMS 평균을 비교한 결과는 유의하지 않은 것으로 나타났다(p>.05). 이 결과로부터 청색광, 백색광 그리고 광학 방식의 스캐너에서는 반복측정 안정성에서 청색광의 오차가 가장 낮은 것으로 나타났으나 통계적 유의성은 없었다. 연구결과 임상적 허용 가능하다는 것이 본 연구의 결론이다.

건축 내부 마감 자동 상세화를 위한 규칙 기반 모듈 구축 방안에 관한 연구 - 바닥, 벽 및 천장을 중심으로 - (A Study on the Establishment of Rule-Based Modules for Automating the Design of Interior Finishes in Architectural Buildings)

  • 하대목;유영수;구본상
    • 한국BIM학회 논문집
    • /
    • 제12권1호
    • /
    • pp.42-54
    • /
    • 2022
  • BIM facilitates data transparency and consistency through three-dimensional parametric modeling and promotes the accurate managing and sharing of project information. In Korea, however, BIM-based detailed design of architectural interior finishes required during the Construction Documents phase increases the burden on architectural firms due to frequent design changes and manual workload. Therefore, the purpose of this study was to establish rule-based modules using parametric modeling that automates repetitive tasks that occur during the detailed design of interior finishing. Interviews with practitioners were conducted to analyze the major finishing elements. Of these floors, walls, and ceilings, which were the most rudimentary and common items, were selected as the subjects of the study. The modules developed in this study have two functions. One is to create new finish types, and the other is the automatic modeling of new types into rooms. For these functions, parameters that belonged to each finish and room element in a BIM model were analyzed and valid parameters directly used for parametric modeling were derived. Then, based on these parameters, rule-based modules for three elements, I.e., floors, walls, and ceilings were constructed with Revit Dynamo, and the effectiveness of the modules was verified with a pilot test. In conclusion, this study suggested a series of processes for automatic finishing to improve the efficiency of BIM-based architectural detailed design of finishes and to contribute in solving the chronic problems occuring during current design processes.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

The effect of the digital manufacturing technique of cantilevered implant-supported frameworks on abutment screw preload

  • Altuwaijri, Shahad Mohammmed;Alotaibi, Hanan Nejer;Alnassar, Talal Mughaileth
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권1호
    • /
    • pp.22-31
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate the misfit and screw preload at the implant abutment connection of implant supported fixed dental prosthesis with cantilever (ICFDP) manufactured using different digital manufacturing techniques and to compare the screw preload before and after cyclic loading. MATERIALS AND METHODS. Mandibular jaw model with four intra-foraminal implants was scanned using digital scanner. Stereolithography file was used to design a framework with nonengaging (NE) abutments and 10 mm cantilever distal to one terminal implant. Five frameworks were constructed using combined digital-conventional techniques (CAD-cast), and five frameworks were constructed using three-dimensional printing (3DP). Additional CAD-cast framework was constructed in a way that ensures passive fit (PF) to use as control. Scanning electron microscope (SEM) measured the implant abutment connection misfit. Sixty screws were used on the corresponding frameworks. Screws were torqued and pre-cyclic loading reverse torque value (RTV) was recorded. Frameworks were subjected to 200,000 loading cycles with a loading point 9 mm from the center of terminal implants adjacent to the cantilever and post-cyclic loading RTVs were recorded. RESULTS. Microscopic readings showed significant differences between frameworks. PF demonstrated the lowest measurements of 16.04 (2.6) ㎛ while CAD-cast demonstrated the highest measurements of 29.2 (3.1) ㎛. In all groups, RTVs were significantly lower than the applied torque. Post-cyclic loading RTV was significantly lower than pre-cyclic loading RTV in PF and 3DP frameworks. Differences in RTVs between the three manufacturing techniques were insignificant. CONCLUSION. Although CAD-cast and three-dimensionally printed (3DP) both produce frameworks with clinically acceptable misfit, 3DP might not be the technique of choice for maintaining screw's preload stability under an aggressive loading situation.

Does the palatal vault form have an influence on the scan time and accuracy of intraoral scans of completely edentulous arches? An in-vitro study

  • Osman, Reham;Alharbi, Nawal
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.294-304
    • /
    • 2022
  • PURPOSE. The purpose of this study was to evaluate the influence of different palatal vault configurations on the accuracy and scan speed of intraoral scans (IO) of completely edentulous arches. MATERIALS AND METHODS. Three different virtual models of a completely edentulous maxillary arch with different palatal vault heights- Cl I moderate (U-shaped), Cl II deep (steep) and Cl III shallow (flat)-were digitally designed using CAD software (Meshmixer; Autodesk, USA) and 3D-printed using SLA-based 3D-printer (XFAB; DWS, Italy) (n = 30; 10 specimens per group). Each model was scanned using intraoral scanner (Trios 3; 3ShapeTM, Denmark). Scanning time was recorded for all samples. Scanning accuracy (trueness and precision) were evaluated using digital subtraction technique using Geomagic Control X v2020 (Geomagic; 3DSystems, USA). One-way analysis of variance (ANOVA) test was used to detect differences in scanning time, trueness and precision among the test groups. Statistical significance was set at α = .05. RESULTS. The scan process could not be completed for Class II group and manufacturer's recommended technique had to be modified. ANOVA revealed no statistically significant difference in trueness and precision values among the test groups (P=.959 and P=.658, respectively). Deep palatal vault (Cl II) showed significantly longer scan time compared to Cl I and III. CONCLUSION. The selection of scan protocol in complex cases such as deep palatal vault is of utmost importance. The modified, adopted longer path scan protocol of deep vault cases resulted in increased scan time when compared to the other two groups.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • 제35권1호
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

CNN based data anomaly detection using multi-channel imagery for structural health monitoring

  • Shajihan, Shaik Althaf V.;Wang, Shuo;Zhai, Guanghao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.181-193
    • /
    • 2022
  • Data-driven structural health monitoring (SHM) of civil infrastructure can be used to continuously assess the state of a structure, allowing preemptive safety measures to be carried out. Long-term monitoring of large-scale civil infrastructure often involves data-collection using a network of numerous sensors of various types. Malfunctioning sensors in the network are common, which can disrupt the condition assessment and even lead to false-negative indications of damage. The overwhelming size of the data collected renders manual approaches to ensure data quality intractable. The task of detecting and classifying an anomaly in the raw data is non-trivial. We propose an approach to automate this task, improving upon the previously developed technique of image-based pre-processing on one-dimensional (1D) data by enriching the features of the neural network input data with multiple channels. In particular, feature engineering is employed to convert the measured time histories into a 3-channel image comprised of (i) the time history, (ii) the spectrogram, and (iii) the probability density function representation of the signal. To demonstrate this approach, a CNN model is designed and trained on a dataset consisting of acceleration records of sensors installed on a long-span bridge, with the goal of fault detection and classification. The effect of imbalance in anomaly patterns observed is studied to better account for unseen test cases. The proposed framework achieves high overall accuracy and recall even when tested on an unseen dataset that is much larger than the samples used for training, offering a viable solution for implementation on full-scale structures where limited labeled-training data is available.

A quantitative assessment method of network information security vulnerability detection risk based on the meta feature system of network security data

  • Lin, Weiwei;Yang, Chaofan;Zhang, Zeqing;Xue, Xingsi;Haga, Reiko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4531-4544
    • /
    • 2021
  • Because the traditional network information security vulnerability risk assessment method does not set the weight, it is easy for security personnel to fail to evaluate the value of information security vulnerability risk according to the calculation value of network centrality, resulting in poor evaluation effect. Therefore, based on the network security data element feature system, this study designed a quantitative assessment method of network information security vulnerability detection risk under single transmission state. In the case of single transmission state, the multi-dimensional analysis of network information security vulnerability is carried out by using the analysis model. On this basis, the weight is set, and the intrinsic attribute value of information security vulnerability is quantified by using the qualitative method. In order to comprehensively evaluate information security vulnerability, the efficacy coefficient method is used to transform information security vulnerability associated risk, and the information security vulnerability risk value is obtained, so as to realize the quantitative evaluation of network information security vulnerability detection under single transmission state. The calculated values of network centrality of the traditional method and the proposed method are tested respectively, and the evaluation of the two methods is evaluated according to the calculated results. The experimental results show that the proposed method can be used to calculate the network centrality value in the complex information security vulnerability space network, and the output evaluation result has a high signal-to-noise ratio, and the evaluation effect is obviously better than the traditional method.

A novel method for testing accuracy of bite registration using intraoral scanners

  • Lydia Kakali;Demetrios J. Halazonetis
    • 대한치과교정학회지
    • /
    • 제53권4호
    • /
    • pp.254-263
    • /
    • 2023
  • Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 ㎛. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 ㎛ or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.

적응형 스케일조절 신경망을 이용한 객체 위치 추적 (Object Tracking Using Adaptive Scale Factor Neural Network)

  • 박선배;유도식
    • 한국항행학회논문지
    • /
    • 제26권6호
    • /
    • pp.522-527
    • /
    • 2022
  • 객체추적은 이전시간에서 추정한 위치와 현재 관측 데이터를 바탕으로 객체의 위치를 연속적으로 추적하는 신호처리 분야이다. 이 논문에서는 3개의 RNN을 서브모듈로 가지는 적응형 스케일조절 신경망을 이용해 입력 데이터의 스케일을 스스로 조절하여 추적할 수 있는 신경망을 제안한다. 객체 추적 성능을 평가하기 위해 객체가 조각별 등가속운동을 하는 1차원 객체 운동 모델에서 제안하는 시스템, 칼만 필터와 최대우도기법의 추적 성능을 비교한다. 그 결과 제안하는 알고리듬의 성능이 평균제곱근오차 기준으로 최대우도기법과 칼만필터보다 다양한 상황에서 전반적으로 우수하며 관측잡음이 커질수록 성능격차가 더 커지는 것을 보인다.