• 제목/요약/키워드: One-dimensional Analysis

검색결과 2,640건 처리시간 0.03초

Underwater striling engine design with modified one-dimensional model

  • Li, Daijin;Qin, Kan;Luo, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.526-539
    • /
    • 2015
  • Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

열평형적분법에 의한 사다리꼴단면의 직선휜에서의 열전달해석 (Heat Transfer Analysis in a Straight Fin of Trapezoidal Profile by the Heat Balance Integral Method)

  • 조종철;조진호
    • 대한설비공학회지:설비저널
    • /
    • 제11권3호
    • /
    • pp.1-8
    • /
    • 1982
  • When exact analytical solutions to certain type of heat conduction problems are quite cumbersome or not obtainable, it is important to introduce approximate analytical methods which are simple and useful compared with numerical methods. In this study, therefore, the Heat Balance Integral Method is applied to analysis of steady-state conduction in a straight fin of trapezoidal profile, and the two-dimensional temperature distribution in the fin and the approximate fin efficiency are obtained. Results are compared with those by the one- dimensional analysis and two-dimensional numerical analysis for a wide range of Biot numbers. It is shown that the two-dimensional temperature distribution obtained by the integral method is in good agreement with that by the finite element method at Biot numbers for which the result by the one-dimensional analysis is unreliable.

  • PDF

ONE-DIMENSIONAL ANALYSIS OF THERMAL STRATIFICATION IN THE AHTR COOLANT POOL

  • Zhao, Haihua;Peterson, Per F.
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.953-968
    • /
    • 2009
  • It is important to accurately predict the temperature and density distributions in large stratified enclosures both for design optimization and accident analysis. Current reactor system analysis codes only provide lumped-volume based models that can give very approximate results. Previous scaling analysis has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by jets modeled using integral techniques. This allows very large reductions in computational effort compared to three-dimensional CFD simulation. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was developed to implement such ideas. This paper summarizes major models for the BMIX++ code, presents the two-plume mixing experiment simulation as one validation example, and describes the codes' application to the liquid salt buffer pool system in the AHTR (Advanced High Temperature Reactor) design. Three design options have been simulated and they exhibit significantly different stratification patterns. One of design options shows the mildest thermal stratification and is identified as the best design option. This application shows that the BMIX++ code has capability to provide the reactor designers with insights to understand complex mixing behavior with mechanistic methods. Similar analysis is possible for liquid-metal cooled reactors.

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created by Induction Variables

  • Zhang, Qing
    • Journal of Information Processing Systems
    • /
    • 제10권4호
    • /
    • pp.523-542
    • /
    • 2014
  • One-dimensional arrays with subscripts formed by induction variables in real programs appear quite frequently. For most famous data dependence testing methods, checking if integer-valued solutions exist for one-dimensional arrays with references created by induction variable is very difficult. The I test, which is a refined combination of the GCD and Banerjee tests, is an efficient and precise data dependence testing technique to compute if integer-valued solutions exist for one-dimensional arrays with constant bounds and single increments. In this paper, the non-continuous I test, which is an extension of the I test, is proposed to figure out whether there are integer-valued solutions for one-dimensional arrays with constant bounds and non-sing ularincrements or not. Experiments with the benchmarks that have been cited from Livermore and Vector Loop, reveal that there are definitive results for 67 pairs of one-dimensional arrays that were tested.

마이크로 모터의 자동화된 FEA 시뮬레이션 (Automated FEA Simulation of Micro Motor)

  • Lee Joon-Seong
    • 한국시뮬레이션학회논문지
    • /
    • 제11권3호
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

1차원 기체-고체 반응기 모델의 로터리킬른 환원로 적용 (Simplified 1-Dimensional Model of Gas-Solid Reactor : Adapting to Coal Reduction Rotary Kiln)

  • 한택진;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.75-78
    • /
    • 2012
  • Rotary kiln furnace is one of the most widely used reactors in industrial field. In this paper, 0-dimensional heat and mass balance for direct coal flame rotary kiln was performed preferentially, then a simplified 1-dimensional model was developed based on 0-dimensional analysis data to proceed additional thermal analysis. Compared the results with the currently operating rotary kiln data to validate 1-dimensional model. Through this procedure, it can help to derive fundamental idea for design and operation of rotary kiln.

  • PDF

강내탄도의 약실 내 추진제 모델링 비교연구 (Comparative Study of Propellant Modeling in Chamber of Interior Ballistic)

  • 장진성;성형건;노태성;최동환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.668-671
    • /
    • 2010
  • 무차원 추진제 모델링 기법과 1차원 추진제 모델링 기법을 사용하여 약실 내 추진제 모델링 기법에 대한 비교 연구를 수행하였다. 무차원 추진제 모델링의 경우 약실 내 추진제 위치 및 배열에 대한 묘사가 불가능 하지만 1차원 추진제 모델링의 경우에는 가능하다. 따라서 약실 내 추진제 배열에 따른 강내탄도 성능해석 시 무차원 추진제 모델링의 경우 강내 마이너스 차압의 예측이 불가능하지만 1차원 추진제 모델링의 경우 예측이 가능함을 확인했으며, 이를 통해 강내탄도 성능해석 시 1차원 추진제 모델링의 필요성을 확인했다.

  • PDF

딱딱한 막대 모양 분자로 이루어진 1차원 유체의 통계 역학적 분석 (A Statistical-Mechanical Analysis of One-Dimensional Fluid of Rigid Rods)

  • 임경희
    • 한국응용과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.45-50
    • /
    • 2009
  • Three-dimensional, statistical-mechanical formulations of problems are usually untractable analytically, and therefore they are commonly solved numerically. However, their one-dimensional counterparts are always to be solved analytically. In general analytical solutions sheds more insights to the problems than numerical solutions. Hence, solutions of one-dimensional problems may provide key properties to the problems, when they are extended to three dimensions. In this article, thermodynamic properties of one-dimensional fluid comprising molecules of rigid rods are analyzed statistical-mechanically. Molecules of rigid rods are characterized with repulsive or excluded volume effect. It is observed that this feature is well reflected in thermodynamic functions such as Helmholtz free energy. volumetric equation of state. chemical potential, entropy, etc.

1차원 빔요소를 활용한 차축 변형고려 차륜-레일 접촉해석 (Wheel-Rail Contact Analysis Considering Axle Deformation Using a One-Dimensional Beam Element)

  • 최하영;이동형;권석진;서정원
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.139-145
    • /
    • 2017
  • It is necessary to analyze the exact contact position and contact stress of the wheel-rail in order to predict damage to the wheel and rail. This study presents a wheel-rail contact analysis model that considers the deformation of the axle. When a wheel-rail contact analysis is performed using a full three-dimensional model of the wheelset and rail, the analytical model becomes very inefficient due to the increase in analysis time and cost. Therefore, modeling the element-coupling model of the wheel and rail as a three-dimensional element and the axle as a one-dimensional element is proposed. The wheel-rail contact characteristics in the proposed analysis model for straight and curved lines were analyzed and compared with the conventional three-dimensional analysis model. Considering the accuracy of the analysis results and time, the result shows that the proposed analytical model has almost the same accuracy as a full three-dimensional model, but the computational effort is significantly reduced.

봉충격시험에 의한 동합금의 동적 항복응력 결정 (Determination of Dynamic Yield Stress of Copper Alloys Using Rod Impact Test)

  • 이정민;민옥기
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1041-1050
    • /
    • 1995
  • The deformed shape of rod specimen of copper alloys was measured after the high-velocity impact against a rigid anvil and analyzed with one-dimensional theory to determine dynamic yield stress and strain-rate sensitivity which is defined as the ratio of dynamic yield stress to static flow stress. The evvect of two-dimensional deformation on the determination of dynamic yield stress by the one-dimensional theory, was investigated through comparison with the analysis by hydrocode. It showed that the one-dimensional theory is relatively consistent with two-dimensional hydrocode in spite of its simplicity in analysis.