

J Inf Process Syst, Vol.10, No.4, pp.523~542, December 2014, Vol.10, No.4, pp.00~00, December 2014
http://dx.doi.org/10.3745/JIPS.01.0005

523 Copyright ⓒ 2014 KIPS

The Accuracy of the Non-continuous I Test for One-
Dimensional Arrays with References Created by

Induction Variables

Qing Zhang*

Abstract—One-dimensional arrays with subscripts formed by induction variables in

real programs appear quite frequently. For most famous data dependence testing

methods, checking if integer-valued solutions exist for one-dimensional arrays with

references created by induction variable is very difficult. The I test, which is a refined

combination of the GCD and Banerjee tests, is an efficient and precise data dependence

testing technique to compute if integer-valued solutions exist for one-dimensional

arrays with constant bounds and single increments. In this paper, the non-continuous I

test, which is an extension of the I test, is proposed to figure out whether there are

integer-valued solutions for one-dimensional arrays with constant bounds and non-sing

ularincrements or not. Experiments with the benchmarks that have been cited from

Livermore and Vector Loop, reveal that there are definitive results for 67 pairs of one-

dimensional arrays that were tested.

Keywords—Data Dependence Analysis, Loop Parallelization, Loop Vectorization,

 Parallelizing/Vectorizing Compilers

1. INTRODUCTION

One, two, and three-dimensional array references approximately account for 56%, 36%, and 8%

of the inspected array references [1], respectively. On the other hand, the author [2] indicated

that loop normalization makes array references become more complex and brings parallel/vector

compilers many difficulties in the source level debugging. Therefore, creating and applying an

efficient and precise data dependence testing technique for one-dimensional arrays with constant

bounds and non-singular increments is very important.

The data dependence problem is to check if two references to the same one-dimensional array

within a nested loop with constant bounds and non-singular increments may refer to the same

element of that array [3-7]. This problem in a general case can be reduced to that of examining

whether a system of one linear equation with n unknown variables has a simultaneous integer-

valued solution that satisfies the constraints for each variable in the system. Assume that a linear

equation in a system is written as:

 (1-1) , 0 1122 11 aXaXaXaXa nnnn

Manuscript received February 1, 2013; first revision May 30, 2013; second revision June 11, 2014;

accepted November 20, 2014.

Corresponding Author: Qing Zhang (zhangqing20070910@163.com)

* Dalian Shipping College, Economic and Technological Development Zone, Lvshun District, Dalian, Liaoning

Province 116052, China. (zhangqing20070910@163.com)

ISSN 1976-913X (Print)

ISSN 2092-805X (Electronic)

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

524

where each is an integer for and each is a scalar integer variable for

Suppose that the constraints to each variable in (11) are represented as:

, Xk = Mk + (m-1) * INCk and 1 m P. (1-2)

Where and are integers for and and are lower

bound, upper bound, and the increment of a general loop, respectively, and P is the number of

loop iterations in the general loop and P =

The GCD test, the Banerjee test, and Fourier-Motzkin elimination are three basic dependence

analysis techniques but are too naive or expensive in practice [3,8-11]. There have been various

advanced techniques to extend the above methods for overcoming the disadvantages of them

[12-18]. The I test is a refined combination of the GCD and Banerjee tests [14,19-21], which is

used to examine the existence of an integer-valued solution as the GCD test and additionally

takes limits into account similar as the Banerjee test. However, the I test was originally devised

to be employed in the cases that the increment of each loop index variable on an iteration is one.

For the cases that the increment of the loop index variables on iteration is not one, the I test

cannot be straightforwardly applied. Normalizing the loop index variables and array references

to enable the I test to be applied is one way to deal with these cases. However, this creates many

difficulties of source level debugging parallel/vector compilers, as already mentioned.

Alternatively, we are proposing the non-continuous I test in this paper for these cases. By

enabling the I test, our proposed testing technique, which extends the I test to directly manage

the non-singular increments of the loop index variables on iterations, can efficiently and precisely

determine data dependence for these cases the same as the I test does.

The rest of this paper is organized as follows: in Section 2, we review the fundamental notion

of the I test. In Section 3, we present the non-continuous I test, which is an extension of the I test.

In Section 4, the experimental results are given. In Section 5, we present our conclusions.

2. FUNDAMENTAL NOTATION OF THE I TEST

The summary accounts of data dependence and the interval equation are briefly introduced in

this section.

2.1 Related Work

In this section, we introduce the fundamental notion for the proposed testing techniques

based on the I test. The requisite notations are first given and the primary theorems and their

application are then offered.

DEFINITION 2-1: Let a be an integer.

 a
+
 = a if a 0, 0 otherwise

a

 = a if a 0, 0 otherwise

DEFINITION 2-2: Let a0, a1, a2,
…, an be integers. For each k, 1 k n, let each Mk and Nk be

either an integer or a distinguished symbol ‘*’ (which means an unknown limit), where Mk Nk

ja nj 0 kX .1 nk

kkk NXM

,kM kN kINC nk 1 ,kM kN kINC

.1
)(

k

kk

INC
MN

Qing Zhang

525

if both Mk and Nk are integers. If n > 0, then the equation:

is said to be (M1, N1; M2, N2; …; Mn, Nn)-integer solvable if the integers j1, j2, …, jn exist, such

that:

 a1 j1 + a2 j2 + + an jn = a0.

 for each k, 1 k n:

 if Mk and Nk are both integers, then Mk jk Nk
 if Mk is an integer, and Nk = *, then Mk jk

 if Mk = *, and Nk is an integer, then j
k
 Nk

DEFINITION 2-3: Let a1, a2,
…, an, L and U be integers. An interval equation is an equation in

the form of:

= [L, U], (2-1)

which denotes the set of normal equations consisting of:

 = L

 = L + 1

 = U.

DEFINITION 2-4: Given that the interval equation (2-1) is subject to the constraints as (1-2). Let

a1, a2,
…, an, L and U be integers. If n > 0, then this interval equation is said to be (M1, N1; M2,

N2; …; Mn, Nn)-integer solvable if one or more of the equations in the set that it denotes is (M1,

N1; M2, N2; …; Mn, Nn)-integer solvable. If L U, then this set is empty, and the interval

equation has no integer-valued solution. If n = 0, this interval equation is said to be integer

solvable, if and only if, L 0 U.

It is easy to make out that a linear equation as (1-1) is (M1, N1; M2, N2; …; Mn, Nn)-integer

solvable, if and only if, the following interval equation:

 = [a0, a0] (2-2)

is (M1, N1; M2, N2; …; Mn, Nn)-integer solvable. While being applied each time, the I test initially

operates on a single equation in the form of (1-1), which is subject to the constraint in the form

of (1-2). It first applies the GCD test on all of the variable coefficients and then applies the

Banerjee test (if the GCD test is successful) on the constant value on the right hand side of the

original equation. If both tested results are positive, the I test transforms the original equation

into an interval equation in the form of (2-2). We will now introduce the fundamental theorems

of the I test to be applied, as shown below.

THEOREM 2-1: Given that an interval equation as (2-1) is subject to the constraints as (1-2). Let

0 1122 11 aXaXaXaXa nnnn

nnnn XaXaXaXa 1122 11

nnnn XaXaXaXa 1122 11

nnnn XaXaXaXa 1122 11

nnnn XaXaXaXa 1122 11

nnnn XaXaXaXa 1122 11

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

526

a1, a2,
…, an, L and U be integers. For each k, 1 k n – 1, if |an| U – L + 1, then the interval

equation:

= [L, U],

is (M1, N1; M2, N2; …; Mn, Nn)-integer solvable, if and only if, the interval equation:

 =

is (M1, N1; M2, N2; …; Mn, Nn)-integer solvable.

Proof: Refer to [14].

From Theorem 2-1, the I test selects an item akXk for 1 k n , in which the coefficient is

small enough to satisfy |ak| U L + 1. Then, the item is moved from the left hand side of the

interval equation to the right hand side to calculate the new integer interval with its low and

upper bounds. This process continues until either a definite result is obtained, or there are no

more qualified items that can be moved.

THEOREM 2-2: Let a1, a2,
…, an, L and U be integers. For each k, 1 k n – 1, let each Mk

and Nk be either an integer or a distinguished symbol “*”, where Mk Nk if both Mk and Nk are

integers. Let . The interval equation:

= [L, U]

is (M1, N1; M2, N2; …; Mn 1, Nn 1)-integer solvable, if and only if, the interval equation:

=

is (M1, N1; M2, N2; …; Mn, Nn)-integer solvable.

Proof: Refer to [14]

According to Theorem 2-1, the item akXk for 1 k n on the left hand side of the interval

equation (2-2) is selected to be moved to the right hand side if its coefficient ak is small enough

(i.e., |ak| U L + 1). However, something this type of item cannot be immediately found, but

may be obtained after transforming the original interval equation to enable all of the variable

coefficients to become smaller. This can be achieved by doing something such as dividing the

interval equation by the greatest common divisor for all of the variable coefficients. To be applied,

the I test theoretically requires the increment of each index variable on an iteration to be one so

that when an approved item is moved, it takes all the integers within the lower and upper bounds

of the moved item to calculate the new integer interval within which all of the integers are

continuous. However, there are many practical cases where the increment of each loop index on

an iteration is not one [22-31]. To avoid the troubles caused by the loop normalization, the non-

continuous I test has been proposed to cope with these cases. The idea behind the proposed

testing technique is to extend the I test so that it can explicitly manage the non-singular increments

of the loop index variables on an iteration.

nnnn XaXaXaXa 1122 11

1122 11 nn XaXaXa],[nnnnnnnn NaMaUMaNaL

),,,gcd(21 naaad

nnnn XaXaXaXa 1122 11

))()()()((1

1

2
2

1
1

n

n

n

n X
d

a
X

d

a
X

d

a
X

d

a

d

U

d

L
 ,

Qing Zhang

527

3. THE NON-CONTINUOUS I TEST

For the cases where the increment of each loop index on an iteration is not one, the additional

restriction, INCk > 1, will be included in (1-2), where INCk is the increment of Xk on an iteration.

Thus, the constraint on each Xk for 1 k n can be mathematically expressed with:

a quadruplet, [Mk, Nk, INCk, + 1], where Mk is the lower bound, Nk is the

upper bound, INCk is the increment, and + 1 is the counts for Xk to iterate

from Mk to Nk by means of the increment, INCk. The data dependence problem is hence reduced

to determine whether a linear equation in the form of (1-1) is subject to the constraints in the

form of (3-1) has a simultaneous integer solution.

, Xk = Mk + (m-1) * INCk and 1 m + 1 for 1 k n (3-1)

As mentioned, the proposed testing technique extends the I test to directly deal with the

constraints on the loop index variable, as represented with (3-1). As such, the interval equation

operated in the I test needs to be transformed correspondingly to achieve this. Before the single

continuous I test is further discussed, we will first introduce its essential notations in Subsection

3.1.

3.1 Non-Continuous Interval Equation

DEFINITION 3-1: Let a0, a1, a2,
…, an be integers. For each k, 1 k n, let each Mk and Nk be an

integer, where Mk Nk. If n > 0. The equation:

a1 X1 + a2 X2 + + an Xn = a0

is then said to be ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn,

 + 1])-integer solvable if the integers j1, j2, …, j
n
 exist, such that:

 a1 j1 + a2 j2 + + an jn = a0.

 for each k, 1 k n: jk = Mk + (m-1) * INCk, where m is an integer and 1 m + 1.

DEFINITION 3-2: Let a1, a2,
…, an, L, and U be integers. A non-continuous interval equation is

an equation in the form of:

 a1 X1 + a2 X2 + + an Xn = [L, U, INC, + 1], (3-2)

which denotes the set of equations consisting of:

 a1 X1 + a2 X2 + + an Xn = L

 a1 X1 + a2 X2 + + an Xn = L + INC

kkk NXM
k

kk

INC

MN

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

k

kk

INC

MN

INC

LU

k

kk

INC

MN
k

kk

INC

MN

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

528

a1 X1 + a2 X2 + + an Xn = L + (+1) INC = U.

The transformed interval equation, which is expressed with (3-2), is employed in the proposed

testing technique to enable the constraints on the loop index variables, as represented with (3-1),

to be directly and consistently operated. Obviously, if INC 0, then the quadruplet, [L, U, INC,

 + 1], represents an integer interval (i.e., [L, U]) within which the actual integers

contained are not continuous and is referred to as a non-continuous integer interval. The

transformed interval equation is thus, a non-continuous integer interval equation. Clearly, the

constraint, [Mk, Nk, INCk, + 1], for each index variable Xk is in itself a non-continuous

integer interval.

DEFINITION 3-3: Let a1, a2,
…, an, L, and U be integers. For each k, 1 k n, let each Mk and Nk

be an integer, where Mk Nk. If n > 0, then the non-continuous interval equation:

a1 X1 + a2 X2 + + an Xn = [L, U, INC, + 1]

is said to be ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn,

 + 1])-integer solvable if one or more of the equations in the set that it denotes is ([M1, N1,

INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn, + 1])-integer

solvable.

It is easy to make out that an ordinary linear equation:

a1 X1 + a2 X2 + + an Xn = a0

is ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn, +

1])-integer solvable, if and only if, the equation:

 a1 X1 + a2 X2 + + an Xn = [a0, a0, INC, 1] (3-3)

is ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn, +

1])-integer solvable. According to Definitions 3-2 and 3-3, because the ordinary linear equation

only contains one linear equation, L and U are both equal to a0. For the sake of L being equal to

U, the value of the third element in [a0, a0, INC, 1] is set to INC and the value does not imply

the correctness of the non-continuous interval, [a0, a0, INC, 1], where INC is equal to the

greatest common divisor of INC1, …, INCn. Since is equal to 1, the value of

the fourth element is set to 1.

While being applied each time, the non-continuous I test initially operates on a single

equation in the form of (1-1), which is subject to the constraints in the form of (3-1). It first

transforms the original equation into an interval equation in the form of (3-3). Below, in

Subsection 3.2, we present the fundamental theorems of the non-continuous I test to be applied

INC

LU

INC

LU

k

kk

INC

MN

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

1
)(00

INC

aa

Qing Zhang

529

to the one-dimensional array with references created by induction variables.

3.2 Non-Continuous Interval Equation Transformation

Since the non-continuous I test deals with non-continuous interval equations, we began by

considering the generalization of the GCD test to such equations.

THEOREM 3-1: Let a1, a2,
…, an, L, U and INC be integers, and let d = gcd(a1, a2,

…, an). The

non-continuous interval equation:

a1 X1 + a2 X2 + + an Xn = [L, U, INC, +1]

has an integer solution, if and only if, d L / d is one element of the non-continuous integer

set {L + (m 1) INC|1 m + 1}.

Proof: According to Definition 3-3 and the theorem that serves as the basis for the standard

GCD test, the equation a1 X1 + a2 X2 + + an Xn = [L, U, INC, +1] has an integer

solution, if and only if, a multiple of d belongs to the non-continuous integer interval [L, U, INC,

+1]. Let qL and rL, be the quotient and remainder, respectively, upon dividing L by d. Now

L / d = (qL d + rL) / d, which is equal to qL if rL = 0, and qL + 1 otherwise. So, d L / d

is equal to qL d if rL = 0, and qL d + d otherwise.

Thus, d L / d is the first multiple of d that is equal to or greater than L. If d L / d≠1

element of the non-continuous integer set {L + (m 1) INC|1 m + 1}, then no

multiple of d is in [L, U, INC, + 1]. If it is one element of the non-continuous integer set

{L + (m 1) INC|1 m + 1}, then there is a multiple of d in [L, U, INC, + 1].

Like the I test, the non-continuous I test first applies the GCD test on all of the variable

coefficients in the non-continuous interval equation, with each integer belonging to the non-

continuous interval that may be examined. If a multiple of the great common divisor for all of

the variable coefficients belongs to the non-continuous integer interval, for example: d L / d

 {L + (m 1) INC|1 m + 1}; then there may be a ([M1, N1, INC1, + 1];

[M2, N2, INC2, + 1]; …; [Mn, Nn, INCn, + 1])-integer solution. Otherwise, there

is no integer solution.

LEMMA 31: Let a1, a2,
…, an, L, U and INC be integers. For each k, 1 k n, let each INCk, Mk

and Nk be an integer, where Mk Nk. If ak > 0, INC > 0, INCk > 0, 0 ak INCk U – L + INC,

and ak INCk is a multiple of INC. Then, the non-continuous interval equation:

a1 X1 + a2 X2 + + an Xn = [L, U, INC, +1]

is ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn, +

1])-integer solvable, if and only if, the non-continuous interval equation:

INC

LU

INC

LU

INC

LU

INC

LU

INC

LU

INC

LU

INC

LU

INC

LU

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

530

a1 X1 + + ak 1 Xk 1 + ak + 1 Xk + 1 + … + an Xn =

[L ak Nk, U ak Mk, INC, + 1]

is ([M1, N1, INC1,

+ 1]; …; [Mk 1, Nk 1, INCk 1,

 + 1]; [Mk + 1, Nk + 1, INCk + 1,

 + 1]; …; [Mn, Nn, INCn, + 1])-integer solvable.

Proof: (if) First, suppose that a1 j1 + + ak 1 jk 1 + ak + 1 jk + 1+ + an jn = z. Here,

j1, …, jk 1, jk + 1, …, jn satisfy the conditions for ([M1, N1, INC1, + 1]; …; [Mk 1, Nk 1,

INCk 1, + 1]; [Mk + 1, Nk + 1, INCk + 1, + 1]; …; [Mn, Nn, INCn,

+ 1]) to be integer solvable and z is one of the elements in the non-continuous integer interval [L

 ak Nk, U ak Mk, INC, + 1]. Then, consider the set of non-

continuous integer intervals {[L ak (Nk (p 1) INCk), U ak (Nk (p 1) INCk), INC,

 + 1| 1 p + 1]. Because ak > 0, INC > 0 and INCk > 0, these non-continuous

integer intervals are listed in the following sequence in ascending order of initial element:

[L ak Nk, U ak Nk, INC, + 1]

[L ak (Nk INCk), U ak (Nk INCk), INC, + 1]

[L ak Mk, U ak Mk, INC, + 1].

For any two consecutive non-continuous integer intervals [L ak (Nk p INCk), U ak (Nk

 p INCk), INC, +1] and [L ak (Nk (p + 1) INCk), U ak (Nk (p + 1) INCk),

INC, +1], there is a gap, in terms of the increment INC, between the two non-continuous

integer intervals, if and only if:

U ak (Nk p INCk) + INC < L ak (Nk (p + 1) INCk).

This inequality reduces to U L + INC < ak INCk, which is false by the above assumption.

Therefore, there is no gap for any two consecutive non-continued integer intervals.

Suppose that L ak (Nk p INCk) + ak INCk is the first element in the non-continuous

integer interval [L ak (Nk (p + 1) INCk), U ak (Nk (p + 1) INCk), INC, +1].

According to the assumption, because ak INCk is a multiple of INC we assume that it is equal

to q INC, where q is an integer variable. Due to 0 ak INCk U L + INC, we can

INC

NaLMaU kkkk

1

11

INC

MN

1

11

k

kk

INC

MN

1

11

k

kk

INC

MN

n

nn

INC

MN

1

11

INC

MN

1

11

k

kk

INC

MN

1

11

k

kk

INC

MN

n

nn

INC

MN

INC

MaLNaU kkkk

INC

LU

k

kk

INC

MN

INC

LU

INC

LU

INC

LU

INC

LU

INC

LU

INC

LU

Qing Zhang

531

eventually obtain 0 q + 1. This implies that two consecutive non-continued integer

intervals can be merged as a new non-continued integer interval [L ak (Nk p INCk), U

ak (Nk (p + 1) INCk), INC, +1]. Thus, we have:

[L ak (Nk p INCk), U ak (Nk p INCk), INC, + 1] = [L ak Nk,

U ak Mk, INC, + 1]. The z, mentioned above, is obviously in one

element of the set of non-continuous integer intervals {[L ak (Nk p INCk), U ak (Nk

p INCk), INC, + 1]| 0 p }. Let t, 0 t , be the specific integer such

that z = L ak (Nk p INCk) + t INC. Then, from a1 j1 + + ak 1 jk 1 + ak + 1 jk + 1+

 + an jn = z, we can have a1 j1 + + ak 1 jk 1 + ak + 1 jk + 1+ + an jn = L ak (Nk

 p INCk) + t INC. This reduces to: a1 j1 + + ak 1 jk 1 + ak (Nk p INCk) + ak + 1

 jk + 1+ + an jn = L + t INC.

Since Nk p INCk is one element in the non-continued integer interval [Mk, Nk, INCk,

 + 1] and L + t INC is one element in the non-continued integer interval [L, U, INC,

 + 1], we can obtain that the non-continuous interval equation a1 X1 + a2 X2 + + an

Xn = [L, U, INC, +1] is ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn,

Nn, INCn, + 1])-integer solvable.

Proof: (only if) Let a1 j1 + + an jn = L + t INC, where j1, …, jn satisfy the conditions

for ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn, + 1])-

integer solvable and 0 t . We can thus obtain a1 j1 + + ak 1 jk 1 + ak + 1 jk + 1+

 + an jn = L ak (Nk p INCk) + t INC, where 0 p . Due to the fact that L

ak (Nk p INCk) + t INC is in the non-continuous integer interval [L ak (Nk p INCk),

U ak (Nk p INCk), INC, + 1] and [L ak (Nk p INCk), U ak (Nk

 p INCk), INC, + 1] = [L ak Nk, U ak Mk, INC, + 1], L

 ak (Nk p INCk) + t INC is obviously in the non-continued integer interval [L ak Nk,

U ak Mk, INC, + 1]. This implies that the non-continuous interval

equation:

INC

LU

INC

INCaLU kk

k

kk

INC

MN

p

0
INC

LU

INC

NaLMaU kkkk

INC

LU

k

kk

INC

MN

INC

LU

k

kk

INC

MN

INC

LU

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

INC

LU

k

kk

INC

MN

INC

LU

k

kk

INC

MN

p

0

INC

LU

INC

NaLMaU kkkk

INC

NaLMaU kkkk

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

532

a1 X1 + + ak 1 Xk 1 + ak + 1 Xk + 1 + … + an Xn =

[L ak Nk, U ak Mk, INC, + 1]

is ([M1, N1, INC1, + 1]; …; [Mk 1, Nk 1, INCk 1, + 1]; [Mk + 1, Nk + 1,

INCk + 1, + 1]; …; [Mn, Nn, INCn, + 1])-integer solvable.

LEMMA 32: Let a1, a2,
…, an, L, U and INC be integers. For each k, 1 k n, let each INCk, Mk

and Nk be an integer, where Mk Nk. If ak < 0, INC > 0, INCk > 0, 0 ak INCk U L + INC,

and ak INCk is a multiple of INC. Then, the non-continuous interval equation:

a1 X1 + a2 X2 + + an Xn = [L, U, INC, +1]

is ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn, + 1])-

integer solvable, if and only if, the non-continuous interval equation:

a1 X1 + + ak 1 Xk 1 + ak + 1 Xk + 1 + … + an Xn =

[L ak Mk, U ak Nk, INC, + 1]

is ([M1, N1, INC1, + 1]; …; [Mk 1, Nk 1, INCk 1, + 1]; [Mk + 1, Nk + 1,

INCk + 1, + 1]; …; [Mn, Nn, INCn, + 1])-integer solvable.

Proof: Similar to the proof of Lemma 3-1.

We will use the example below to show the strength of Lemmas 3-1 and 3-2. Consider the

following linear equation:

 X1 2 X2 +3 X3 = 3, (Ex.1)

which is subject to the constraints X1 [1, 5, 1, 5], X2 [2, 6, 2, 3] and X3 [1, 5, 2, 3].

First, the greatest common divisor for 1, 2 and 2 is 1, so the value for INC is equal to 1. Hence,

the non-continuous I test transforms the equation (Ex.1) into the following non-continuous

interval equation:

 X1 2 X2 + 3 X3 = [3, 3, 1, 1]. (Ex.1-1)

By using Lemma 3-1, X1 is selected to be moved to the right hand side due to the fact that 0 a1

 INC1 U L + INC (0 1 1 (3 3 + 1)) and a1 INC1 is a multiple of INC (1 is a

multiple of 1). This gives rise to a new non-continuous interval equation of:

 2 X2 + 3 X3 = [2, 2, 1, 5]. (Ex.1-2)

INC

NaLMaU kkkk

1

11

INC

MN

1

11

k

kk

INC

MN

1

11

k

kk

INC

MN

n

nn

INC

MN

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

INC

MaLNaU kkkk

1

11

INC

MN

1

11

k

kk

INC

MN

1

11

k

kk

INC

MN

n

nn

INC

MN

Qing Zhang

533

Then, by using Lemma 3-2, 2 X2 is selected to be moved to the right hand side due to the fact

that 0 a2 INC2 U L + INC (0 (2) 2 = 4 (2 (2) + 1)=5) and a2 INC2 is a

multiple of INC (4 is a multiple of 1). This results in a new non-continuous interval equation of:

 3 X3 = [2, 14, 1, 13]. (Ex.1-3)

By using Lemma 3-1, 3 X3 is selected to be moved to the right hand side, since 0 a3 INC3

U L + INC (0 3 2 = 6 (14 2 + 1) = 13) and a3 INC3 is a multiple of INC (6 is a

multiple of 1). This leads to a new non-continuous interval equation of:

 0 = [13, 11, 1, 25]. (Ex.1-4)

Apparently, 0 is one element in the non-continuous integer interval [13, 11, 1, 25]. Hence,

the non-continuous I test proves that there are integer solutions.

3.3 Interval Equation Transformation Using the GCD Test

Obviously, as seen in Lemmas 3-1 and 3-2, the proposed method considers justifying the

movement of any variable to the right. Any variable in a non-continuous interval equation can

be moved to the right if the coefficient for it has small enough values to justify the movement of

the variable to the right. If all of the coefficients for variables in the non-continuous interval

equation do not have sufficiently small enough values to justify the movements of variables to

the right, then Lemmas 31 and 32 cannot be applied to the immediate movement. While every

variable in a non-continuous interval equation cannot be moved to the right, Lemma 3-3

describes a transformation using the GCD test, which enables additional variables to be moved.

LEMMA 33: Let a1, a2,
…, an, L, U and INC be integers. For each k, 1 k n, let each oINCk,

Mk and Nk be an integer, where Mk Nk. Let d = gcd(a1, a2,
…, an) and L, U, and INC are a

multiple of d, respectively. Then the non-continuous interval equation:

a1 X1 + a2 X2 + + an Xn = [L, U, INC, +1]

is ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn, + 1])-

integer solvable, if and only if, the non-continuous interval equation:

is ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn, + 1])-

integer solvable.

Proof: (if) First, suppose that a1 j1 + a2 j2 + + an jn = z.

where j1, j2, …, jn satisfy the conditions of ([M1, N1, INC1, + 1]; [M2, N2, INC2,

+ 1]; …; [Mn, Nn, INCn, + 1]) integer-solvable, and z is one element in the non-

continuous integer interval [L, U, INC, +1], which is equal to L + p INC for 0 p

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

]1,,,[)()()(2
2

1
1

INC

LU

d

INC

d

U

d

L
X

d

a
X

d

a
X

d

a
n

n

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

INC

LU

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

534

. By the assumption that L, U, and INC are a multiple of d, respectively; then, let L = r1 d,

U = s1 d and INC = t1 d, where r1, s1, and t1 are the integers. Subsequently, z is one element

in the non-continuous integer interval [r1 d, s1 d, t1 d, + 1] and is equal to r1 d + p

 t1 d for 0 p . We thus have a1 j1 + a2 j2 + + an jn = d (r1 + p t1) or

= r1 + p t1. Because r1 = , s1 = , t1 = and =

; then (r1 + p t1) is one element in the non-continuous integer interval

. Hence, the non-continuous interval equation

 is ([M1, N1, INC1, + 1]; [M2, N2, INC2,

 + 1]; …; [Mn, Nn, INCn, + 1])-integer solvable.

Proof: (only if) Suppose that = z, where j1, j2, …, jn satisfy the

conditions for ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn,

 + 1]) integer-solvable and z is one element in the non-continuous integer interval

[] and is equal to for 0 p . We then have

. By the assumption that L, U, and INC are a multiple

of d , respectively; then, let L = r1 d, U = s1 d and INC = t1 d, where r1, s1, and t1 are

integers. Subsequently, z is one element in the non-continuous integer interval [r1, s1, t1,

+ 1] and is equal to r1 + p × t1 for 0 p . We thus have = r1 + p ×

t1 or a1 j1 + a2 j2 + + an jn = d (r1 + p × t1). Because d (r1 + p × t1) = L + p INC and

 = , we have the fact that d (r1 + p × t1) is one element in the non-continuous

integer interval [L, U, INC, +1]. Hence, the non-continuous interval equation a1 X1 + a2

 X2 + + an Xn = [L, U, INC, +1] is ([M1, N1, INC1, + 1]; [M2, N2, INC2,

 + 1]; …; [Mn, Nn, INCn, + 1]) integer-solvable.

Consider the following Fortran do-loop in Fig. 1(a). Since the do-loop is an unnormalized

Fortran do-loop, it is transformed into the following normalized Fortran do-loop from the do-

loop normalization in the parallel/vector compiler, as shown in Fig. 1(b). The data dependence

equation for the Fortran normalized do-loop in Fig. 1(b) is shown below.

DO I = 4, 20, 4 DO %I = 1, 5, 1

S1: A(I + 4) = A(2 I) + N M S1: A(4 + 4 %I) = A(8 %I) + N M

ENDDO ENDDO

 I = 24

(a) (b)

Fig. 1. A Fortran do-loop with constant bounds and non-one-increment. (a) An unnormalized

Fortran do loop. (b) A normalized Fortran do-loop.

INC

LU

1

11

t

rs

1

11

t

rs

n
n j

d

a
j

d

a
j

d

a
)()()(2

2
1

1
d

L

d

U

d

INC

1

11

t

rs

INC

LU

]1,,,[

INC

LU

d

INC

d

U

d

L

]1,,,[)()()(2
2

1
1

INC

LU

d

INC

d

U

d

L
X

d

a
X

d

a
X

d

a
n

n
1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

n
n j

d

a
j

d

a
j

d

a
)()()(2

2
1

1

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

1,,,

INC

LU

d

INC

d

U

d

L

d

INCpL)(

INC

LU

d

INCqL
j

d

a
j

d

a
j

d

a
n

n)(
)()()(2

2
1

1

1

11

t

rs

1

11

t

rs
 n

n j
d

a
j

d

a
j

d

a
)()()(2

2
1

1

1

11

t

rs

INC

LU

INC

LU

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

Qing Zhang

535

 4 X1 8 X2 = 4, (Ex.2)

subject to the limits 1 X1 5 and 1 X2 5.

When the I test is used to deal with the equation (Ex.2), the equation (Ex.2) is transformed

into the following interval equation:

 4 X1 8 X2 = [4, 4]. (Ex.2-1)

Because the coefficients for variables X1 and X2 do not satisfy the condition of the movement,

Theorem 2-1 cannot be applied to deal with the interval equation (Ex.2-1). However, gcd(4, 8)

= 4 from Theorem 2-2, the interval equation (Ex.2-1) is transformed into the following interval

equation:

 X1 2 X2 = [1, 1]. (Ex.2-2)

Since the coefficient for X1 is 1, it satisfies the condition 1 (|1| = 1) 1 (1 (1) + 1 = 1)

from Theorem 2-1. Hence, from Theorem 2-1, the interval equation (Ex.2-2) is transformed into

the following interval equation:

 2 X2 = [6, 2]. (Ex.2-3)

According to Theorem 2-2, because gcd(2) = 2, the interval equation (Ex.2-3) is transformed

into the following interval equation:

 X2 = [3, 1]. (Ex.2-4)

Since the coefficient for X2 is 1, according to Theorem 2-1, the interval equation (Ex.2-4) is

transformed into the following interval equation:

 0 = [2, 4]. (Ex2-5)

Because 2 0 4, the I test proves that there are integer-valued solutions.

On the other hand, the data dependence equation for the Fortran unnormalized do-loop in Fig.

1(a) is shown below:

 X1 2 X2 = 4, (Ex.3)

subject to the limits X1 [4, 20, 4, 5] and X2 [4, 20, 4, 5].

When the non-continuous I test is applied to deal with the equation (Ex.3), the equation (Ex.3)

is transformed into the following non-continuous interval equation:

 X1 2 X2 = [4, 4, 4, 1], (Ex3-1)

Where INC = gcd(4, 4) = 4. Since the coefficient for X1 is one, according to Lemma 3-1, it

satisfies 4 (1 4 = 4) 4 (4 (4) + 4 = 4) and 4 is a multiple of 4. Thus, according to Lemma

3-1, the non-continuous interval equation (Ex.3-1) is transformed into the following non-

continuous interval equation:

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

536

 2 X2 = [24, 8, 4, 5]. (Ex.3-2)

According to Lemma 3-3, gcd(2) = 2 and 24, 8 and 4 are all a multiple of 2, so the non-

continuous interval equation (Ex.3-2) is transformed into the following interval equation:

 X2 = [12, 4, 2, 5]. (Ex.3-3)

Since the coefficient for X2 is 1, according to Lemma 3-2, it satisfies 4 ((1) 4 = 4) 10

(4 (12) + 2 = 10) and 4 is a multiple of 2. Therefore, the non-continuous interval equation

(Ex.3-3) is transformed into the following non-continuous interval equation:

 0 = [8, 16, 2, 13]. (Ex.3-4)

Because 0 is one element in [8, 16, 2, 13], the non-continuous I test indicates that there are

integer-valued solutions.

The comparison between the I test and the non-continuous I test for solving the same example

in Fig. 1 is shown in Table 1. As shown in Table 1, the do-loop normalization of one time is

performed for the I test. However, do-loop normalization is not needed for the non-continuous I

test. Both the I test and the non-continuous I test perform a computation two times for the

Banerjee bound. The I test finishes the GCD test two times and the non-continuous I test

performs the GCD test one time. It is indicated from the compared results of Table 1 that the

non-continuous I test extends the I test to be able to directly deal with a Fortran do-loop with

constant bounds and non-singular increments, and that the execution time of data dependence

analysis for parallel/vector compilers can be efficiently improved.

Table 1. The comparison between the I test and the non-continuous I test for solving the same

example in Fig. 1

 Do-loop normalization The Banerjee bound The GCD test

The I test 1 2 2

The non-continuous I test 0 2 1

3.4 The Algorithm for the Non-Continuous I Test

The following algorithm is used to describe how to implement the non-continuous I test.

ALGORITHM 1: The implementation of the non-continuous I test.

Input: (a0, a1, , an, INC, M1, N1, INC1; ; Mn, Nn, INCn)

Output:

 no: the non-continuous interval equation a1 X1 + a2 X2 + + an Xn = [L, U, INC,

+1] is not ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn,

 + 1])-integer solvable.

 or yes: the non-continuous interval equation a1 X1 + a2 X2 + + an Xn = [L, U, INC,

+1] is ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn, Nn, INCn,

 + 1])-integer solvable.

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

Qing Zhang

537

 or maybe: the non-continuous interval equation a1 X1 + a2 X2 + + an Xn = [L, U,

INC, +1] may be ([M1, N1, INC1, + 1]; [M2, N2, INC2, + 1]; …; [Mn,

Nn, INCn, + 1])-integer solvable.

Method:

(1) L = a0, U = a0 and = {a1, , an}

(2) While (True)

(2a) While (ak such that |ak INCk| U – L + INC and |ak INCk| is a multiple of

INC)

(3) If (ak > 0) then

(3a) L = L ak Nk, and U = U ak Mk.

Else

(3b) L = L ak Mk, and U = U ak Nk.

End If

(4) = {ak}.

(5) If (=) then

(5a) If (0 is one element in [L, U, INC, +1]) then

(5b) return (yes).

Else

(5c) return (no).

End If

End While

(6) Compute the greatest common divisor for each element in and let d be equal to the

computed result.

(7) If (d L / d is not an element in [L, U, INC, +1] then return (no).

(8) If (d 1) then

(8a) If (L, U and INC are, respectively, a multiple of d) then

(8b) for all a a = a / d.

(8c) L = L / d, U = U / d and INC = INC / d.

(8d) Else return (maybe).

End If

(9) Else return (maybe).

End If

End While

End Algorithm

THEOREM 3-2: The non-continuous I test that is an extension of the I test is an efficient and

precise method to figure out whether there are integer-valued solutions for one-dimensional

arrays with constant bounds and non-singular increments or not.

Proof: Refer to Algorithm 1.

If the non-continuous I test returns a result of yes or no, then the result is definitive. For

example, a returned value of yes means that the equation is definitively ([M1, N1, INC1,

+ 1]; …; [Mn, Nn, INCn, + 1])-integer solvable, and a returned value of no means that

INC

LU

1

11

INC

MN

2

22

INC

MN

n

nn

INC

MN

INC

LU

INC

LU

1

11

INC

MN

n

nn

INC

MN

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

538

the equation is definitively not ([M1, N1, INC1, + 1]; …; [Mn, Nn, INCn, + 1])-

integer solvable. On the other hand, a returned value of maybe means that the equation has a

solution that satisfies the limits on all the variables that the non-continuous I test has managed to

move to the right hand side, and might still have a solution that satisfies the limits on the rest of

the variables.

If the non-continuous I test returns a result of maybe because there are no longer any

coefficients with small enough values for Lemmas 3-1 and 3-2 to justify their movement to the

right, then, it is very clear that the ‘step-by-step Banerjee test’ should be performed (i.e., to

finish the computation of the Banerjee bounds). A negative result means that no solution exists.

Performing the ‘Banerjee test residue’ also ensures that the non-continuous I test is always at

least as accurate as the Banerjee test.

3.5 The Time Complexity of the Non-Continuous I Test

The main phases of the non-continuous I test to detect whether integer solutions exist for a

non-continuous interval equation (3-2) satisfying the constraints of (3-1) are as follows: (1)

finding a qualified item to be moved to the right hand side of the non-continuous interval

equation (3-2); (2) calculating the new non-continuous integer interval on the right hand side of

a non-continuous interval equation (3-2), due to the movement of the qualified item; and (3)

applying the non-continuous interval-equation GCD test on all of the coefficients for each

variable in the new non-continuous interval equation.

The time complexity of finding a qualified item to be moved is (n), where n is the number

of variables in a non-continuous interval equation. Thus, the time complexity of moving all of

the items (if they are all qualified) is (n
2
), which is due to the fact that there are at most n

moves. To calculate the new non-continuous integer interval on the right hand side of a non-

continuous interval equation due to the movement of the qualified item is actually equivalent to

applying a single Banerjee inequality [17]. Applying a single Banerjee inequality to calculate

the lower bound and the upper bound of the new non-continuous integer interval needs a

constant time of (1). Thus, the time complexity of the non-continuous I test to calculate each

new non-continuous integer interval is (n) because there are at most n moves. In the absolute

case, the non-continuous I tests involve n GCD tests. In actual practice, it usually requires far

fewer time, and normally no more than (1). Hence, the time complexity of the non-continuous

I test to be able to determine data dependence for one-dimensional arrays with constant bounds

and non-singular increments is (n
2
), which is similar to the results obtained by using the I test

[14].

4. EXPERIMENTAL RESULTS

We tested the I test and the non-continuous I test and performed experiments on the codes

abstracted from the following four numerical packages: Vector Loop, Livermore, MDG (Perfect

Benchmarks), and MG3D (Perfect Benchmarks) [8,32,33]. One-hundred and forty pairs of one-

dimensional array references were observed to have subscripts with non-singular increments. If

lower bounds, upper bounds, and non-singular increments were unknown variables (at the time

of compilation), then assume that they were 1, 39, and 2, respectively [34]. After manual do-

loop normalization for 140 pairs of one-dimensional array references was performed, the I test

1

11

INC

MN

n

nn

INC

MN

Qing Zhang

539

was used to figure out if there were integer-valued solutions for the normalized do-loops.

Simultaneously, the non-continuous I test was also applied to compute whether there were

integer-valued solutions for the original 140 pairs of one-dimensional array references. The

experimental results for the I test and the non-continuous I test for solving the same problems

are shown in Table 2.

Table 2. The experimental results for the I test and the non-continuous I test for solving the same

problems

Manual do-loop

normalization
The Banerjee bound The GCD test

The number of integer-

valued solutions

The I test 140 310 160 140

The non-continuous I test 0 310 0 140

As can be seen in Table 2, manual do-loop normalization was performed one time for each

case tested for the I test. However, manual do-loop normalization for every case checked was

not needed for the non-continuous I test. Because do-loop normalization made the coefficient for

each variable in any tested data dependence equation become larger, for 87.5% of the tested

cases the I test additionally needed to perform one GCD test and for the other 12.5% of checked

cases the I test additionally needed to perform two GCD tests. For any original cases examined

without do-loop normalization, the coefficient for every variable was 1 or 1, so the non-

continuous I test did not need to additionally perform one GCD test. The total number for

computation of the Banerjee bound for all of the cases tested was 310 times for both the I test

and the non-continuous I test. As indicated in Table 2, the I test and the non-continuous I test

obtained the same precise results for the cases that were tested. As shown in Table 2, the non-

continuous I test extended the I test to directly deal with a Fortran do-loop with non-singular

increments. Simultaneously, the execution time of data dependence analysis for parallel/vector

compilers could be efficiently improved.

5. CONCLUSIONS

The research in [10] stated the following: (1) the cost of scanning array subscripts and loop

bounds to build a dependence problem was typically 2 to 4 times the copying cost (the cost of

building a system of dependence equations) for the problem; and (2) the dependence analysis

cost for more than half of the simple arrays tested was typically 2 to 4 times the copying cost.

However, the dependence analysis cost for other simple arrays and all of the regular, convex,

and complex arrays tested was more than 4 times that of the copying cost. Based on these results

we can conclude that for simple arrays, the analysis cost of data dependence for a parallelizing/

vectorizing compiler generally occupies about 29% to 57% of the total compilation time. But,

for complex arrays, the analysis cost of dependence testing takes more than 57% of the total

compilation time. Therefore, enhancing the performance of dependence testing may result in a

significant improvement on the compilation performance of a parallelizing/vectorizing compiler.

The Power test is a combination of the Fourier-Motzkin variable elimination method with an

extension of Euclid’s GCD algorithm [11]. The Omega test combines new methods for

eliminating equality constraints with an extension of the Fourier-Motzkin variable elimination

method [10]. The two tests currently have the highest precision and the widest applicable range

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

540

in the field of data dependence analysis for testing arrays with linear subscripts. Wolfe [11]

found that using the Fourier-Motzkin variable elimination method for dependence testing takes

from 22 to 28 times longer than the Banerjee test. Wolfe also indicated that the Lambda test is a

very precise and efficient method for testing two-dimensional coupled arrays with constant

bounds. The authors [3,16,17,20,21,35] also indicated that the Omega test is a precise method.

The Range test [6] and the access range test [7,18] currently have the highest precision and the

widest applicable range for checking nonlinear arrays in the field of data dependence testing.

The non-continuous I test can be viewed as involving the term-by-term computation of the

Banerjee bounds. The Banerjee bound computation component of the non-continuous I test costs,

at most, the same as a single Banerjee test. Depending on the application domains and environments,

the non-continuous I test can be applied independently or together with other well-known

methods to analyze the data dependence for linear-subscript array references.

REFERENCES

[1] Z. Shen, Z. Li, and P. C. Yew, “An empirical study of Fortran programs for parallelizing

compilers,” IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 3, pp. 356-364, 1990.

[2] C. I. Jaramillo, “Source level debugging techniques and tools for optimized code,” Ph.D. dissertation,

University of Pittsburgh, PA, 2000.

[3] U. Banerjee, Dependence Analysis for Supercomputing. Boston, MA: Kluwer Academic Publishers,

1988.

[4] Z. Li, P. C. Yew, and C. Q. Zhu, “An efficient data dependence analysis for parallelizing

compilers,” IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp. 26-34, 1990.

[5] R. Eigenmann, J. Hoeflinger, and D. Padua, “On the automatic parallelization of the Perfect

Benchmarks (R),” IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 1, pp. 5-23

1998.

[6] W. Blume and R. Eigenmann, “Nonlinear and symbolic data dependence testing,” IEEE Transactions

on Parallel and Distributed Systems, vol. 9, no. 12, pp. 1180-1194, 1998.

[7] J. P. Hoeflinger, “Interprocedural parallelization using memory classification analysis,” Ph.D.

dissertation, University of Illinois at Urbana-Champaign, IL, 1998.

[8] J. Dongarra, M. Furtney, S. Reinhardt, and J. Russell, “Parallel Loops: a test suite for parallelizing

compilers: description and example results,” Parallel Computing, vol. 17, no, 10, pp. 1247-1255,

1991.

[9] K. Psarris, D. Klappholz, and X. Kong, “On the accuracy of the Banerjee test,” Journal of Parallel

and Distributed Computing, vol. 12, no. 2, pp. 152-157, 1991.

[10] W. Pugh, “A practical algorithm for exact array dependence analysis,” Communications of the

ACM, vol. 35, no. 8, pp. 102-114, 1992.

[11] M. Wolfe and C. W. Tseng, “The power test for data dependence,” IEEE Transactions on Parallel and

Distributed Systems, vol. 3, no. 5, pp. 591-601, 1992.

[12] W. J. Vaughan “A residuals management model of the iron and steel industry: a linear programming

approach,” Ph.D. dissertation, Georgetown University, Washington, DC, 1975.

[13] R. Triolet, F. Irigoin, and P. Feautrier, “Direct parallelization of call statements,” in Proceedings of the

SIGPLAN Symposium on Compiler Construction, Palo Alto, CA, 1986, pp. 176-185.

[14] X. Kong, D. Klappholz, and K. Psarris, “The I test: an improved dependence test for automatic

parallelization and vectorization,” IEEE Transactions on Parallel and Distributed Systems, vol. 2, no.

3, pp. 342-349, 1991.

[15] P. M. Petersen, “Evaluation of programs and parallelizing compilers using dynamic analysis

techniques,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, IL, 1993.

[16] U. Banerjee, Loop Transformations for Restructuring Compilers: The Foundations. Boston, MA:

Qing Zhang

541

Kluwer Academic Publishers, 1993.

[17] U. Banerjee, Dependence Analysis. Boston, MA: Kluwer Academic Publishers, 1997.

[18] Y. Paek, “Compiling for distributed memory multiprocessors based on access region analysis,” Ph.D.

dissertation, University of Illinois at Urbana-Champaign, IL, 1997.

[19] K. Psarris, X. Kong, and D. Klappholz, “The direction vector I test,” IEEE Transactions on Parallel

and Distributed Systems, vol. 4, no. 11, pp. 1280-1290, 1993.

[20] K. Psarris and K. Kyriakopoulos, “Data dependence testing in practice,” in Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques, Newport, Beach,

CA, 1999, pp. 264-273.

[21] D. Niedzielski and K. Psarris, “An analytical comparison of the I-test and Omega test,” in Proceedings

of the 12th International Workshop on Languages and Compilers for Parallel Computing

(LCPC1999), La Jolla, CA, 1999, pp. 251-270.

[22] B. T. Smith, J. M. Boyle, and J. J. Dongarra, Matrix Eigensystem Routines-EISPACK Guide, 2nd

ed. Heidelberg: Springer, 1976.

[23] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 2nd ed.

Reading, MA: Addison-Wesley, 1981.

[24] W. L. Chang and C. P. Chu, “The extension of the I test,” Parallel Computing, vol. 24, no. 14, pp.

2101-2127, 1998.

[25] W. L. Chang, C. P. Chu, and J. Wu, “The generalized lambda test: a multi-dimensional version of

Banerjee's algorithm,” International Journal of Parallel and Distributed Systems and Networks, vol. 2,

no. 2, pp. 69-78, 1999.

[26] T. C. Huang and C. M. Yang, “Data dependence analysis for array references,” Journal of Systems and

Software, vol. 52, no. 1, pp. 55-65, 2000.

[27] W. L. Chang, J. W. Huang, and C. P. Chu, “The non-continuous I test: an improved dependence test

for reducing complexity of source level debugging for parallel compilers,” in Proceedings of the 3rd

International Conference on Parallel and Distributed Computing, Applications and Technologies

(PDCAT2002), Kanazawa, Japan, 2002, pp. 455-462.

[28] W. L. Chang and C. P. Chu, “The generalized direction vector I test,” Parallel Computing, vol. 27, no.

8, pp. 1117-1144, 2001.

[29] W. L. Chang, C. P. Chu, and J. H. Wu, “A multi-dimensional version of the I test,” Parallel

Computing, vol. 27, no. 13, pp. 1783-1799, 2001.

[30] J. Hoeflinger and Y. Paek, “A comparative analysis of dependence testing mechanisms,” in Proceedings

of the 13
th
 International Workshop on Languages and Compilers for Parallel Computing (LCPC2000),

Yorktown Heights, NY, 2001, pp. 289-303.

[31] W. L. Chang, C. P. Chu, and J. H. Wu, “A multi-dimensional direction vector I test,” Journal of System

and Software (Accepted).

[32] D. Levine, D. Callahan, and J. Dongarra, “A comparative study of automatic vectorizing compilers,”

Parallel Computing, vol. 17, no. 10, pp. 1223-1244, 1991.

[33] W. Blume and R. Eigenmann, “Performance analysis pf parallelizing compilers on the Perfect

Benchmarks programs,” IEEE Transactions on Parallel and Distributed Systems, vol. 3, no. 6, pp.

643-656, 1992.

[34] P. M. Petersen and D. A. Padua, “Static and dynamic evaluation of data dependence analysis

techniques,” IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 11, pp. 1121-1132,

1996.

[35] K. Psarris and K. Kyriakopoulos, “An experimental evaluation of data dependence analysis

techniques,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 3, pp. 196-213,

2004.

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created
by Induction Variables

542

Qing Zhang

She received the M.S. degree in Computer Science from Dalian Maritime

University in 2009. She is currently a lectureship in Dalian Shipping College. Her

research interests include parallel processing, distributed systems, and

multimedia processing.

