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Abstract—One-dimensional arrays with subscripts formed by induction variables in 

real programs appear quite frequently. For most famous data dependence testing 

methods, checking if integer-valued solutions exist for one-dimensional arrays with 

references created by induction variable is very difficult. The I test, which is a refined 

combination of the GCD and Banerjee tests, is an efficient and precise data dependence 

testing technique to compute if integer-valued solutions exist for one-dimensional 

arrays with constant bounds and single increments. In this paper, the non-continuous I 

test, which is an extension of the I test, is proposed to figure out whether there are 

integer-valued solutions for one-dimensional arrays with constant bounds and non-sing

ularincrements or not. Experiments with the benchmarks that have been cited from 

Livermore and Vector Loop, reveal that there are definitive results for 67 pairs of one-

dimensional arrays that were tested. 
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1. INTRODUCTION 

One, two, and three-dimensional array references approximately account for 56%, 36%, and 8% 

of the inspected array references [1], respectively. On the other hand, the author [2] indicated 

that loop normalization makes array references become more complex and brings parallel/vector 

compilers many difficulties in the source level debugging. Therefore, creating and applying an 

efficient and precise data dependence testing technique for one-dimensional arrays with constant 

bounds and non-singular increments is very important. 

The data dependence problem is to check if two references to the same one-dimensional array 

within a nested loop with constant bounds and non-singular increments may refer to the same 

element of that array [3-7]. This problem in a general case can be reduced to that of examining 

whether a system of one linear equation with n unknown variables has a simultaneous integer-

valued solution that satisfies the constraints for each variable in the system. Assume that a linear 

equation in a system is written as:   

 

               (1-1) ,  0 1122 11 aXaXaXaXa nnnn  
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where each  is an integer for  and each  is a scalar integer variable for  

Suppose that the constraints to each variable in (11) are represented as:  

 

, Xk = Mk + (m-1) * INCk and 1  m  P.            (1-2) 

 

Where  and  are integers for  and   and  are lower 

bound, upper bound, and the increment of a general loop, respectively, and P is the number of 

loop iterations in the general loop and P =  

The GCD test, the Banerjee test, and Fourier-Motzkin elimination are three basic dependence 

analysis techniques but are too naive or expensive in practice [3,8-11]. There have been various 

advanced techniques to extend the above methods for overcoming the disadvantages of them 

[12-18]. The I test is a refined combination of the GCD and Banerjee tests [14,19-21], which is 

used to examine the existence of an integer-valued solution as the GCD test and additionally 

takes limits into account similar as the Banerjee test. However, the I test was originally devised 

to be employed in the cases that the increment of each loop index variable on an iteration is one. 

For the cases that the increment of the loop index variables on iteration is not one, the I test 

cannot be straightforwardly applied. Normalizing the loop index variables and array references 

to enable the I test to be applied is one way to deal with these cases. However, this creates many 

difficulties of source level debugging parallel/vector compilers, as already mentioned. 

Alternatively, we are proposing the non-continuous I test in this paper for these cases. By 

enabling the I test, our proposed testing technique, which extends the I test to directly manage 

the non-singular increments of the loop index variables on iterations, can efficiently and precisely 

determine data dependence for these cases the same as the I test does. 

The rest of this paper is organized as follows: in Section 2, we review the fundamental notion 

of the I test. In Section 3, we present the non-continuous I test, which is an extension of the I test. 

In Section 4, the experimental results are given. In Section 5, we present our conclusions. 

 

 

2. FUNDAMENTAL NOTATION OF THE I TEST 

The summary accounts of data dependence and the interval equation are briefly introduced in 

this section. 

  

2.1 Related Work  

In this section, we introduce the fundamental notion for the proposed testing techniques  

based on the I test. The requisite notations are first given and the primary theorems and their 

application are then offered.  

DEFINITION 2-1: Let a be an integer. 

 

  a
+
 = a     if a  0, 0 otherwise 

a

 = a     if a  0, 0 otherwise 

 

DEFINITION 2-2: Let a0, a1, a2, 
…, an be integers. For each k, 1 k  n, let each Mk and Nk be 

either an integer or a distinguished symbol ‘*’ (which means an unknown limit), where Mk  Nk 
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if both Mk and Nk are integers. If n > 0, then the equation: 

 

 
 

is said to be (M1, N1; M2, N2; …; Mn, Nn)-integer solvable if the integers j1, j2, …, jn exist, such 

that: 

 

 a1 j1 + a2  j2 +  + an  jn = a0. 

 for each k, 1 k  n: 

 if Mk and Nk are both integers, then Mk  jk  Nk 
 if Mk is an integer, and Nk = *, then Mk  jk 

 if Mk = *, and Nk is an integer, then j
k 
 Nk 

 

DEFINITION 2-3: Let a1, a2, 
…, an, L and U be integers. An interval equation is an equation in 

the form of: 

 

= [L, U],          (2-1) 

 

which denotes the set of normal equations consisting of: 

 

  = L 

  = L + 1 

  

  = U. 

 

DEFINITION 2-4: Given that the interval equation (2-1) is subject to the constraints as (1-2). Let 

a1, a2, 
…, an, L and U be integers. If n > 0, then this interval equation is said to be (M1, N1; M2, 

N2; …; Mn, Nn)-integer solvable if one or more of the equations in the set that it denotes is (M1, 

N1; M2, N2; …; Mn, Nn)-integer solvable. If L  U, then this set is empty, and the interval 

equation has no integer-valued solution. If n = 0, this interval equation is said to be integer 

solvable, if and only if, L  0  U.  

It is easy to make out that a linear equation as (1-1) is (M1, N1; M2, N2; …; Mn, Nn)-integer 

solvable, if and only if, the following interval equation: 

 

           = [a0, a0]              (2-2) 

 

is (M1, N1; M2, N2; …; Mn, Nn)-integer solvable. While being applied each time, the I test initially 

operates on a single equation in the form of (1-1), which is subject to the constraint in the form 

of (1-2). It first applies the GCD test on all of the variable coefficients and then applies the 

Banerjee test (if the GCD test is successful) on the constant value on the right hand side of the 

original equation. If both tested results are positive, the I test transforms the original equation 

into an interval equation in the form of (2-2). We will now introduce the fundamental theorems 

of the I test to be applied, as shown below. 

THEOREM 2-1: Given that an interval equation as (2-1) is subject to the constraints as (1-2). Let 

0 1122 11   aXaXaXaXa nnnn  

nnnn XaXaXaXa   1122 11   

nnnn XaXaXaXa   1122 11   

nnnn XaXaXaXa   1122 11   


nnnn XaXaXaXa   1122 11   

nnnn XaXaXaXa   1122 11   
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a1, a2, 
…, an, L and U be integers. For each k, 1  k  n – 1, if |an|  U – L + 1, then the interval 

equation: 

 
= [L, U],  

 

is (M1, N1; M2, N2; …; Mn, Nn)-integer solvable, if and only if, the interval equation: 

 

 =  
 

is (M1, N1; M2, N2; …; Mn, Nn)-integer solvable. 

Proof: Refer to [14]. 

From Theorem 2-1, the I test selects an item akXk for 1  k  n , in which the coefficient is 

small enough to satisfy |ak|  U  L + 1. Then, the item is moved from the left hand side of the 

interval equation to the right hand side to calculate the new integer interval with its low and 

upper bounds. This process continues until either a definite result is obtained, or there are no 

more qualified items that can be moved. 

THEOREM 2-2: Let a1, a2, 
…, an, L and U be integers. For each k, 1 k  n – 1, let each Mk 

and Nk be either an integer or a distinguished symbol “*”, where Mk  Nk if both Mk and Nk are 

integers. Let . The interval equation: 

 

 
= [L, U]

  
 

is (M1, N1; M2, N2; …; Mn  1, Nn  1)-integer solvable, if and only if, the interval equation: 

 

 
=

  
 

is (M1, N1; M2, N2; …; Mn, Nn)-integer solvable. 

Proof: Refer to [14] 

According to Theorem 2-1, the item akXk for 1  k  n on the left hand side of the interval 

equation (2-2) is selected to be moved to the right hand side if its coefficient ak is small enough 

(i.e., |ak|  U  L + 1). However, something this type of item cannot be immediately found, but 

may be obtained after transforming the original interval equation to enable all of the variable 

coefficients to become smaller. This can be achieved by doing something such as dividing the 

interval equation by the greatest common divisor for all of the variable coefficients. To be applied, 

the I test theoretically requires the increment of each index variable on an iteration to be one so 

that when an approved item is moved, it takes all the integers within the lower and upper bounds 

of the moved item to calculate the new integer interval within which all of the integers are 

continuous. However, there are many practical cases where the increment of each loop index on 

an iteration is not one [22-31]. To avoid the troubles caused by the loop normalization, the non-

continuous I test has been proposed to cope with these cases. The idea behind the proposed 

testing technique is to extend the I test so that it can explicitly manage the non-singular increments 

of the loop index variables on an iteration. 
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3. THE NON-CONTINUOUS I TEST  

For the cases where the increment of each loop index on an iteration is not one, the additional 

restriction, INCk > 1, will be included in (1-2), where INCk is the increment of Xk on an iteration. 

Thus, the constraint on each Xk for 1  k  n can be mathematically expressed with:  

a quadruplet, [Mk, Nk, INCk,  + 1], where Mk is the lower bound, Nk is the  

upper bound, INCk is the increment, and  + 1 is the counts for Xk to iterate  

from Mk to Nk by means of the increment, INCk. The data dependence problem is hence reduced 

to determine whether a linear equation in the form of (1-1) is subject to the constraints in the 

form of (3-1) has a simultaneous integer solution. 

 

, Xk = Mk + (m-1) * INCk and 1  m   + 1 for 1  k  n   (3-1) 

As mentioned, the proposed testing technique extends the I test to directly deal with the 

constraints on the loop index variable, as represented with (3-1). As such, the interval equation 

operated in the I test needs to be transformed correspondingly to achieve this. Before the single 

continuous I test is further discussed, we will first introduce its essential notations in Subsection 

3.1. 

 

3.1 Non-Continuous Interval Equation 

DEFINITION 3-1: Let a0, a1, a2, 
…, an be integers. For each k, 1  k  n, let each Mk and Nk be an 

integer, where Mk  Nk. If n > 0. The equation:  

 

a1  X1 + a2  X2 +  + an  Xn = a0 

 

is then said to be ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn, 

 + 1])-integer solvable if the integers j1, j2, …, j
n
 exist, such that: 

 

 a1 j1 + a2  j2 +  + an  jn = a0. 

 for each k, 1  k  n: jk = Mk + (m-1) * INCk, where m is an integer and 1  m   + 1. 

 

DEFINITION 3-2: Let a1, a2, 
…, an, L, and U be integers. A non-continuous interval equation is 

an equation in the form of: 

 

       a1  X1 + a2  X2 +  + an  Xn = [L, U, INC,  + 1],            (3-2) 

 

which denotes the set of equations consisting of:  

 

 a1  X1 + a2  X2 +  + an  Xn = L 

 a1  X1 + a2  X2 +  + an  Xn = L + INC 
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a1  X1 + a2  X2 +  + an  Xn = L + ( +1)  INC = U. 

 

The transformed interval equation, which is expressed with (3-2), is employed in the proposed 

testing technique to enable the constraints on the loop index variables, as represented with (3-1), 

to be directly and consistently operated. Obviously, if INC  0, then the quadruplet, [L, U, INC,

 + 1], represents an integer interval (i.e., [L, U]) within which the actual integers 

contained are not continuous and is referred to as a non-continuous integer interval. The 

transformed interval equation is thus, a non-continuous integer interval equation. Clearly, the 

constraint, [Mk, Nk, INCk,  + 1], for each index variable Xk is in itself a non-continuous 

integer interval. 

DEFINITION 3-3: Let a1, a2, 
…, an, L, and U be integers. For each k, 1  k  n, let each Mk and Nk 

be an integer, where Mk  Nk. If n > 0, then the non-continuous interval equation:  

 

a1  X1 + a2  X2 +  + an  Xn = [L, U, INC,  + 1] 

 

is said to be ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn, 

 + 1])-integer solvable if one or more of the equations in the set that it denotes is ([M1, N1, 

INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn,  + 1])-integer 

solvable. 

It is easy to make out that an ordinary linear equation: 

 

a1  X1 + a2  X2 +  + an  Xn = a0 

 

is ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn,  + 

1])-integer solvable, if and only if, the equation: 

 

            a1  X1 + a2  X2 +  + an  Xn = [a0, a0, INC, 1]               (3-3) 

 

is ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn,  + 

1])-integer solvable. According to Definitions 3-2 and 3-3, because the ordinary linear equation 

only contains one linear equation, L and U are both equal to a0. For the sake of L being equal to 

U, the value of the third element in [a0, a0, INC, 1] is set to INC and the value does not imply 

the correctness of the non-continuous interval, [a0, a0, INC, 1], where INC is equal to the 

greatest common divisor of INC1, …, INCn. Since  is equal to 1, the value of 

the fourth element is set to 1. 

While being applied each time, the non-continuous I test initially operates on a single 

equation in the form of (1-1), which is subject to the constraints in the form of (3-1). It first 

transforms the original equation into an interval equation in the form of (3-3). Below, in 

Subsection 3.2, we present the fundamental theorems of the non-continuous I test to be applied 
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to the one-dimensional array with references created by induction variables.  

 

3.2 Non-Continuous Interval Equation Transformation  

Since the non-continuous I test deals with non-continuous interval equations, we began by 

considering the generalization of the GCD test to such equations. 

THEOREM 3-1: Let a1, a2, 
…, an, L, U and INC be integers, and let d = gcd(a1, a2, 

…, an). The 

non-continuous interval equation: 

 

a1  X1 + a2  X2 +  + an  Xn = [L, U, INC, +1]  

 

has an integer solution, if and only if, d  L / d is one element of the non-continuous integer 

set {L + (m  1)  INC|1  m   + 1}. 

Proof: According to Definition 3-3 and the theorem that serves as the basis for the standard 

GCD test, the equation a1  X1 + a2  X2 +  + an  Xn = [L, U, INC, +1] has an integer 

solution, if and only if, a multiple of d belongs to the non-continuous integer interval [L, U, INC, 

+1]. Let qL and rL, be the quotient and remainder, respectively, upon dividing L by d. Now 

L / d = (qL  d + rL) / d, which is equal to qL if rL = 0, and qL + 1 otherwise. So, d  L / d 

is equal to qL  d if rL = 0, and qL  d + d otherwise.  

Thus, d  L / d is the first multiple of d that is equal to or greater than L. If d  L / d≠1  

element of the non-continuous integer set {L + (m  1)  INC|1  m   + 1}, then no 

multiple of d is in [L, U, INC,  + 1]. If it is one element of the non-continuous integer set 

{L + (m  1)  INC|1  m   + 1}, then there is a multiple of d in [L, U, INC,  + 1].  

Like the I test, the non-continuous I test first applies the GCD test on all of the variable 

coefficients in the non-continuous interval equation, with each integer belonging to the non-

continuous interval that may be examined. If a multiple of the great common divisor for all of 

the variable coefficients belongs to the non-continuous integer interval, for example: d  L / d 

 {L + (m  1)  INC|1  m   + 1}; then there may be a ([M1, N1, INC1,  + 1]; 

[M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn,  + 1])-integer solution. Otherwise, there 

is no integer solution. 

LEMMA 31: Let a1, a2, 
…, an, L, U and INC be integers. For each k, 1 k  n, let each INCk, Mk 

and Nk be an integer, where Mk  Nk. If ak > 0, INC > 0, INCk > 0, 0  ak  INCk  U – L + INC, 

and ak  INCk is a multiple of INC. Then, the non-continuous interval equation: 

 

a1  X1 + a2  X2 +  + an  Xn = [L, U, INC, +1] 

is ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn,  + 

1])-integer solvable, if and only if, the non-continuous interval equation: 
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a1  X1 +  + ak  1  Xk   1 + ak + 1  Xk + 1 + … + an  Xn = 

[L  ak  Nk, U  ak  Mk, INC,  + 1] 

 

is ([M1, N1, INC1, 
 

+ 1]; …; [Mk  1, Nk  1, INCk  1,

 

 + 1]; [Mk + 1, Nk + 1, INCk + 1, 

 + 1]; …; [Mn, Nn, INCn,  + 1])-integer solvable.    

Proof: (if) First, suppose that a1  j1 +  + ak  1  jk   1 + ak + 1  jk + 1+  + an  jn = z. Here, 

j1, …, jk  1, jk + 1, …, jn satisfy the conditions for ([M1, N1, INC1,  + 1]; …; [Mk  1, Nk  1, 

INCk  1,  + 1]; [Mk + 1, Nk + 1, INCk + 1,  + 1]; …; [Mn, Nn, INCn,  

+ 1]) to be integer solvable and z is one of the elements in the non-continuous integer interval [L 

 ak  Nk, U  ak  Mk, INC,  + 1]. Then, consider the set of non-

continuous integer intervals {[L  ak  (Nk  (p  1)  INCk), U  ak  (Nk  (p  1)  INCk), INC, 

 + 1| 1  p   + 1]. Because ak > 0, INC > 0 and INCk > 0, these non-continuous 

integer intervals are listed in the following sequence in ascending order of initial element: 

[L  ak  Nk, U  ak  Nk, INC,  + 1] 

[L  ak  (Nk  INCk), U  ak  (Nk  INCk), INC,  + 1] 

 

[L  ak  Mk, U  ak  Mk, INC,  + 1]. 

For any two consecutive non-continuous integer intervals [L  ak  (Nk  p  INCk), U  ak  (Nk 

 p  INCk), INC, +1] and [L  ak  (Nk  (p + 1)  INCk), U  ak  (Nk  (p + 1)  INCk), 

INC, +1], there is a gap, in terms of the increment INC, between the two non-continuous 

integer intervals, if and only if: 

 

U  ak  (Nk  p  INCk) + INC < L  ak  (Nk  (p + 1)  INCk). 

 

This inequality reduces to U  L + INC < ak  INCk, which is false by the above assumption. 

Therefore, there is no gap for any two consecutive non-continued integer intervals. 

Suppose that L  ak  (Nk  p  INCk) + ak  INCk is the first element in the non-continuous 

integer interval [L  ak  (Nk  (p + 1)  INCk), U  ak  (Nk  (p + 1)  INCk), INC, +1]. 

According to the assumption, because ak  INCk is a multiple of INC we assume that it is equal 

to q  INC, where q is an integer variable. Due to 0  ak  INCk  U  L + INC, we can 
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eventually obtain 0  q   + 1. This implies that two consecutive non-continued integer 

intervals can be merged as a new non-continued integer interval [L  ak  (Nk  p  INCk), U  

ak  (Nk  (p + 1)  INCk), INC, +1]. Thus, we have: 

[L  ak  (Nk  p  INCk), U  ak  (Nk  p  INCk), INC,  + 1] = [L  ak  Nk, 

U  ak  Mk, INC,  + 1]. The z, mentioned above, is obviously in one 

element of the set of non-continuous integer intervals {[L  ak  (Nk  p  INCk), U  ak  (Nk  

p  INCk), INC,  + 1]| 0  p  }. Let t, 0  t  , be the specific integer such 

that z = L  ak  (Nk  p  INCk) + t  INC. Then, from a1  j1 +  + ak  1  jk   1 + ak + 1  jk + 1+ 

 + an  jn = z, we can have a1  j1 +  + ak  1  jk   1 + ak + 1  jk + 1+  + an  jn = L  ak  (Nk 

 p  INCk) + t  INC. This reduces to: a1  j1 +  + ak  1  jk   1 + ak  (Nk  p  INCk) + ak + 1 

 jk + 1+  + an  jn = L + t  INC. 

Since Nk  p  INCk is one element in the non-continued integer interval [Mk, Nk, INCk, 

 + 1] and L + t  INC is one element in the non-continued integer interval [L, U, INC, 

 + 1], we can obtain that the non-continuous interval equation a1  X1 + a2  X2 +  + an  

Xn = [L, U, INC, +1] is ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, 

Nn, INCn,  + 1])-integer solvable. 

Proof: (only if) Let a1  j1 +  + an  jn = L + t  INC, where j1, …, jn satisfy the conditions 

for ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn,  + 1])-

integer solvable and 0 t  . We can thus obtain a1  j1 +  + ak  1  jk   1 + ak + 1  jk + 1+ 

 + an  jn = L  ak  (Nk  p  INCk) + t  INC, where 0 p  . Due to the fact that L  

ak  (Nk  p  INCk) + t  INC is in the non-continuous integer interval [L  ak  (Nk  p  INCk), 

U  ak  (Nk  p  INCk), INC,  + 1] and [L  ak  (Nk  p  INCk), U  ak  (Nk 

 p  INCk), INC,  + 1] = [L  ak  Nk, U  ak  Mk, INC,  + 1], L 

 ak  (Nk  p  INCk) + t  INC is obviously in the non-continued integer interval [L  ak  Nk, 

U  ak  Mk, INC,  + 1]. This implies that the non-continuous interval 

equation: 
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a1  X1 +  + ak  1  Xk   1 + ak + 1  Xk + 1 + … + an  Xn =  

[L  ak  Nk, U  ak  Mk, INC,  + 1] 

is ([M1, N1, INC1,  + 1]; …; [Mk  1, Nk  1, INCk  1,  + 1]; [Mk + 1, Nk + 1, 

INCk + 1,  + 1]; …; [Mn, Nn, INCn,  + 1])-integer solvable.    

 

LEMMA 32: Let a1, a2, 
…, an, L, U and INC be integers. For each k, 1  k  n, let each INCk, Mk 

and Nk be an integer, where Mk  Nk. If ak < 0, INC > 0, INCk > 0, 0  ak  INCk  U  L + INC, 

and ak  INCk is a multiple of INC. Then, the non-continuous interval equation: 

 

a1  X1 + a2  X2 +  + an  Xn = [L, U, INC, +1] 

 

is ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn,  + 1])-

integer solvable, if and only if, the non-continuous interval equation: 

 

a1  X1 +  + ak  1  Xk   1 + ak + 1  Xk + 1 + … + an  Xn = 

[L  ak  Mk, U  ak  Nk, INC,  + 1] 

 

is ([M1, N1, INC1,  + 1]; …; [Mk  1, Nk  1, INCk  1,  + 1]; [Mk + 1, Nk + 1, 

INCk + 1,  + 1]; …; [Mn, Nn, INCn,  + 1])-integer solvable.    

Proof: Similar to the proof of Lemma 3-1.    

We will use the example below  to show the strength of Lemmas 3-1 and 3-2. Consider the 

following linear equation: 

 

                         X1  2  X2 +3  X3 = 3,                       (Ex.1) 

 

which is subject to the constraints X1  [1, 5, 1, 5], X2  [2, 6, 2, 3] and X3  [1, 5, 2, 3]. 

First, the greatest common divisor for 1, 2 and 2 is 1, so the value for INC is equal to 1. Hence, 

the non-continuous I test transforms the equation (Ex.1) into the following non-continuous 

interval equation: 

 

                      X1  2  X2 + 3  X3 = [3, 3, 1, 1].                 (Ex.1-1) 

 

By using Lemma 3-1, X1 is selected to be moved to the right hand side due to the fact that 0  a1 

 INC1  U  L + INC (0  1  1  (3  3 + 1)) and a1  INC1 is a multiple of INC (1 is a 

multiple of 1). This gives rise to a new non-continuous interval equation of: 

 

                          2  X2 + 3  X3 = [2, 2, 1, 5].                   (Ex.1-2) 
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Then, by using Lemma 3-2, 2  X2 is selected to be moved to the right hand side due to the fact 

that 0  a2  INC2  U  L + INC (0  (2)  2 = 4  (2  (2) + 1)=5) and a2  INC2 is a 

multiple of INC (4 is a multiple of 1). This results in a new non-continuous interval equation of: 

 

                             3  X3 = [2, 14, 1, 13].                       (Ex.1-3) 

 

By using Lemma 3-1, 3  X3 is selected to be moved to the right hand side, since 0  a3  INC3  

U  L + INC (0  3  2 = 6  (14  2 + 1) = 13) and a3  INC3 is a multiple of INC (6 is a 

multiple of 1). This leads to a new non-continuous interval equation of: 

 

                             0 = [13, 11, 1, 25].                         (Ex.1-4) 

 

Apparently, 0 is one element in the non-continuous integer interval [13, 11, 1, 25]. Hence, 

the non-continuous I test proves that there are integer solutions.  

 

3.3 Interval Equation Transformation Using the GCD Test 

Obviously, as seen in Lemmas 3-1 and 3-2, the proposed method considers justifying the 

movement of any variable to the right. Any variable in a non-continuous interval equation can 

be moved to the right if the coefficient for it has small enough values to justify the movement of 

the variable to the right. If all of the coefficients for variables in the non-continuous interval 

equation do not have sufficiently small enough values to justify the movements of variables to 

the right, then Lemmas 31 and 32 cannot be applied to the immediate movement. While every 

variable in a non-continuous interval equation cannot be moved to the right, Lemma 3-3 

describes a transformation using the GCD test, which enables additional variables to be moved. 

LEMMA 33: Let a1, a2, 
…, an, L, U and INC be integers. For each k, 1  k  n, let each oINCk, 

Mk and Nk be an integer, where Mk  Nk. Let d = gcd(a1, a2, 
…, an) and L, U, and INC are a 

multiple of d, respectively. Then the non-continuous interval equation: 
 

a1  X1 + a2  X2 +  + an  Xn = [L, U, INC, +1] 

 

is ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn,  + 1])-

integer solvable, if and only if, the non-continuous interval equation: 
 

 

is ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn,  + 1])-

integer solvable.    

Proof: (if) First, suppose that a1  j1 + a2  j2 +  + an  jn = z.  

where j1, j2, …, jn satisfy the conditions of ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  

+ 1]; …; [Mn, Nn, INCn,  + 1]) integer-solvable, and z is one element in the non-

continuous integer interval [L, U, INC, +1], which is equal to  L + p  INC for 0  p  
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. By the assumption that L, U, and INC are a multiple of d, respectively; then, let L = r1  d, 

U = s1  d and INC = t1  d, where r1, s1, and t1 are the integers. Subsequently, z is one element 

in the non-continuous integer interval [r1  d, s1  d, t1  d,  + 1] and is equal to r1  d + p 

 t1  d for 0  p  . We thus have a1  j1 + a2  j2 +  + an  jn = d  (r1 + p  t1) or 

= r1 + p  t1. Because r1 = , s1 = , t1 =  and  = 

; then (r1 + p  t1) is one element in the non-continuous integer interval 

. Hence, the non-continuous interval equation  

 is ([M1, N1, INC1,  + 1]; [M2, N2, INC2, 

 + 1]; …; [Mn, Nn, INCn,  + 1])-integer solvable. 

Proof: (only if) Suppose that  = z, where j1, j2, …, jn satisfy the 

conditions for ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn, 

 + 1]) integer-solvable and z is one element in the non-continuous integer interval 

[ ] and is equal to  for 0  p  . We then have

. By the assumption that L, U, and INC are a multiple 

of d , respectively; then, let L = r1  d, U = s1  d and INC = t1  d, where r1, s1, and t1 are 

integers. Subsequently, z is one element in the non-continuous integer interval [r1, s1, t1,  

+ 1] and is equal to r1 + p × t1 for 0  p  . We thus have  = r1 + p × 

t1 or a1  j1 + a2  j2 +  + an  jn = d  (r1 + p × t1). Because d  (r1 + p × t1) = L + p  INC and 

 = , we have the fact that d  (r1 + p × t1) is one element in the non-continuous 

integer interval [L, U, INC, +1]. Hence, the non-continuous interval equation a1  X1 + a2 

 X2 +  + an  Xn = [L, U, INC, +1] is ([M1, N1, INC1,  + 1]; [M2, N2, INC2, 

 + 1]; …; [Mn, Nn, INCn,  + 1]) integer-solvable.    

Consider the following Fortran do-loop in Fig. 1(a). Since the do-loop is an unnormalized 

Fortran do-loop, it is transformed into the following normalized Fortran do-loop from the do-

loop normalization in the parallel/vector compiler, as shown in Fig. 1(b). The data dependence 

equation for the Fortran normalized do-loop in Fig. 1(b) is shown below. 
 

DO I = 4, 20, 4                                              DO %I = 1, 5, 1 

S1: A(I + 4) = A(2  I) + N  M                               S1: A(4 + 4  %I ) = A(8  %I) + N  M 

ENDDO                                                   ENDDO 

                                                           I = 24 

 

(a)                                                           (b) 
 
Fig. 1. A Fortran do-loop with constant bounds and non-one-increment. (a) An unnormalized 

Fortran do loop. (b) A normalized Fortran do-loop. 
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                           4  X1  8  X2 = 4,                         (Ex.2) 

 

subject to the limits 1  X1  5 and 1  X2  5. 

When the I test is used to deal with the equation (Ex.2), the equation (Ex.2) is transformed 

into the following interval equation: 

 

                        4  X1  8  X2 = [4, 4].                      (Ex.2-1) 

 

Because the coefficients for variables X1 and X2 do not satisfy the condition of the movement, 

Theorem 2-1 cannot be applied to deal with the interval equation (Ex.2-1). However, gcd(4, 8) 

= 4 from Theorem 2-2, the interval equation (Ex.2-1) is transformed into the following interval 

equation: 

 

                           X1  2  X2 = [1, 1].                      (Ex.2-2) 

 

Since the coefficient for X1 is 1, it satisfies the condition 1 (|1| = 1)  1 (1  (1) + 1 = 1) 

from Theorem 2-1. Hence, from Theorem 2-1, the interval equation (Ex.2-2) is transformed into 

the following interval equation: 

 

                            2  X2 = [6, 2].                        (Ex.2-3) 

 

According to Theorem 2-2, because gcd(2) = 2, the interval equation (Ex.2-3) is transformed 

into the following interval equation: 

                              X2 = [3, 1].                         (Ex.2-4) 

 

Since the coefficient for X2 is 1, according to Theorem 2-1, the interval equation (Ex.2-4) is 

transformed into the following interval equation: 

 

                                0 = [2, 4].                          (Ex2-5) 

 

Because 2  0  4, the I test proves that there are integer-valued solutions. 

On the other hand, the data dependence equation for the Fortran unnormalized do-loop in Fig. 

1(a) is shown below: 

 

                              X1  2  X2 = 4,                         (Ex.3) 

 

subject to the limits X1  [4, 20, 4, 5] and X2  [4, 20, 4, 5]. 

When the non-continuous I test is applied to deal with the equation (Ex.3), the equation (Ex.3) 

is transformed into the following non-continuous interval equation: 

 

                          X1  2  X2 = [4, 4, 4, 1],                   (Ex3-1) 
 

Where INC = gcd(4, 4) = 4. Since the coefficient for X1 is one, according to Lemma 3-1, it 

satisfies 4 (1  4 = 4)  4 (4  (4) + 4 = 4) and 4 is a multiple of 4. Thus, according to Lemma 

3-1, the non-continuous interval equation (Ex.3-1) is transformed into the following non-

continuous interval equation: 
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                           2  X2 = [24, 8, 4, 5].                     (Ex.3-2) 

 

According to Lemma 3-3, gcd(2) = 2 and 24, 8 and 4 are all a multiple of 2, so the non-

continuous interval equation (Ex.3-2) is transformed into the following interval equation: 

 

                            X2 = [12, 4, 2, 5].                       (Ex.3-3) 

 

Since the coefficient for X2 is 1, according to Lemma 3-2, it satisfies 4 ((1)  4 = 4)  10 

(4  (12) + 2 = 10) and 4 is a multiple of 2. Therefore, the non-continuous interval equation 

(Ex.3-3) is transformed into the following non-continuous interval equation: 

 

                           0 = [8, 16, 2, 13].                          (Ex.3-4) 

 

Because 0 is one element in [8, 16, 2, 13], the non-continuous I test indicates that there are 

integer-valued solutions. 

The comparison between the I test and the non-continuous I test for solving the same example 

in Fig. 1 is shown in Table 1. As shown in Table 1, the do-loop normalization of one time is 

performed for the I test. However, do-loop normalization is not needed for the non-continuous I 

test. Both the I test and the non-continuous I test perform a computation two times for the 

Banerjee bound. The I test finishes the GCD test two times and the non-continuous I test 

performs the GCD test one time. It is indicated from the compared results of Table 1 that the 

non-continuous I test extends the I test to be able to directly deal with a Fortran do-loop with 

constant bounds and non-singular increments, and that the execution time of data dependence 

analysis for parallel/vector compilers can be efficiently improved. 

 
Table 1. The comparison between the I test and the non-continuous I test for solving the same 

example in Fig. 1 

 Do-loop normalization The Banerjee bound The GCD test 

The I test 1 2 2 

The non-continuous I test 0 2 1 

 

3.4 The Algorithm for the Non-Continuous I Test 

The following algorithm is used to describe how to implement the non-continuous I test. 

ALGORITHM 1: The implementation of the non-continuous I test. 

Input: (a0, a1, , an, INC, M1, N1, INC1; ; Mn, Nn, INCn) 

Output: 

 no: the non-continuous interval equation a1  X1 + a2  X2 +  + an  Xn = [L, U, INC, 

+1] is not ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn, 

 + 1])-integer solvable. 

 or yes: the non-continuous interval equation a1  X1 + a2  X2 +  + an  Xn = [L, U, INC, 

+1] is ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, Nn, INCn, 

 + 1])-integer solvable. 
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 or maybe: the non-continuous interval equation a1  X1 + a2  X2 +  + an  Xn = [L, U, 

INC, +1] may be ([M1, N1, INC1,  + 1]; [M2, N2, INC2,  + 1]; …; [Mn, 

Nn, INCn,  + 1])-integer solvable. 

Method: 

(1)  L = a0, U = a0 and  = {a1, , an} 

(2) While (True) 

(2a) While ( ak   such that |ak  INCk|  U – L + INC and |ak  INCk| is a multiple of 

INC) 

(3) If (ak > 0) then 

(3a) L = L  ak  Nk, and U = U  ak  Mk. 

Else  

(3b) L = L  ak  Mk, and U = U  ak  Nk. 

End If 

(4)  =   {ak}. 

(5) If ( = ) then 

(5a) If (0 is one element in [L, U, INC, +1]) then 

(5b) return (yes). 

Else 

(5c) return (no). 

End If 

End While 

(6) Compute the greatest common divisor for each element in  and let d be equal to the 

computed result. 

(7) If (d  L / d is not an element in [L, U, INC, +1] then return (no). 

(8) If (d  1) then 

(8a) If (L, U and INC are, respectively, a multiple of d) then 

(8b) for all a   a = a / d. 

(8c) L = L / d, U = U / d and INC = INC / d. 

(8d) Else return (maybe). 

End If 

(9) Else return (maybe). 

End If 

End While 

End Algorithm 

THEOREM 3-2: The non-continuous I test that is an extension of the I test is an efficient and 

precise method to figure out whether there are integer-valued solutions for one-dimensional 

arrays with constant bounds and non-singular increments or not. 

Proof: Refer to Algorithm 1. 

If the non-continuous I test returns a result of yes or no, then the result is definitive. For 

example, a returned value of yes means that the equation is definitively ([M1, N1, INC1,  

+ 1]; …; [Mn, Nn, INCn,  + 1])-integer solvable, and a returned value of no means that 
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the equation is definitively not ([M1, N1, INC1,  + 1]; …; [Mn, Nn, INCn,  + 1])-

integer solvable. On the other hand, a returned value of maybe means that the equation has a 

solution that satisfies the limits on all the variables that the non-continuous I test has managed to 

move to the right hand side, and might still have a solution that satisfies the limits on the rest of 

the variables. 

If the non-continuous I test returns a result of maybe because there are no longer any 

coefficients with small enough values for Lemmas 3-1 and 3-2 to justify their movement to the 

right, then, it is very clear that the ‘step-by-step Banerjee test’ should be performed (i.e., to 

finish the computation of the Banerjee bounds). A negative result means that no solution exists. 

Performing the ‘Banerjee test residue’ also ensures that the non-continuous I test is always at 

least as accurate as the Banerjee test. 

 

3.5 The Time Complexity of the Non-Continuous I Test 

The main phases of the non-continuous I test to detect whether integer solutions exist for a 

non-continuous interval equation (3-2) satisfying the constraints of (3-1) are as follows: (1) 

finding a qualified item to be moved to the right hand side of the non-continuous interval 

equation (3-2); (2) calculating the new non-continuous integer interval on the right hand side of 

a non-continuous interval equation (3-2), due to the movement of the qualified item; and (3) 

applying the non-continuous interval-equation GCD test on all of the coefficients for each 

variable in the new non-continuous interval equation. 

The time complexity of finding a qualified item to be moved is (n), where n is the number 

of variables in a non-continuous interval equation. Thus, the time complexity of moving all of 

the items (if they are all qualified) is (n
2
), which is due to the fact that there are at most n 

moves. To calculate the new non-continuous integer interval on the right hand side of a non-

continuous interval equation due to the movement of the qualified item is actually equivalent to 

applying a single Banerjee inequality [17]. Applying a single Banerjee inequality to calculate 

the lower bound and the upper bound of the new non-continuous integer interval needs a 

constant time of (1). Thus, the time complexity of the non-continuous I test to calculate each 

new non-continuous integer interval is (n) because there are at most n moves. In the absolute 

case, the non-continuous I tests involve n GCD tests. In actual practice, it usually requires far 

fewer time, and normally no more than (1). Hence, the time complexity of the non-continuous 

I test to be able to determine data dependence for one-dimensional arrays with constant bounds 

and non-singular increments is (n
2
), which is similar to the results obtained by using the I test 

[14]. 

 

4. EXPERIMENTAL RESULTS 

We tested the I test and the non-continuous I test and performed experiments on the codes 

abstracted from the following four numerical packages: Vector Loop, Livermore, MDG (Perfect 

Benchmarks), and MG3D (Perfect Benchmarks) [8,32,33]. One-hundred and forty pairs of one-

dimensional array references were observed to have subscripts with non-singular increments. If 

lower bounds, upper bounds, and non-singular increments were unknown variables (at the time 

of compilation), then assume that they were 1, 39, and 2, respectively [34]. After manual do-

loop normalization for 140 pairs of one-dimensional array references was performed, the I test 
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was used to figure out if there were integer-valued solutions for the normalized do-loops. 

Simultaneously, the non-continuous I test was also applied to compute whether there were 

integer-valued solutions for the original 140 pairs of one-dimensional array references. The 

experimental results for the I test and the non-continuous I test for solving the same problems 

are shown in Table 2. 

 
Table 2. The experimental results for the I test and the non-continuous I test for solving the same 

problems 

 
Manual do-loop 

normalization 
The Banerjee bound The GCD test 

The number of integer-

valued solutions 

The I test 140 310 160 140 

The non-continuous I test 0 310 0 140 

 

As can be seen in Table 2, manual do-loop normalization was performed one time for each 

case tested for the I test. However, manual do-loop normalization for every case checked was 

not needed for the non-continuous I test. Because do-loop normalization made the coefficient for 

each variable in any tested data dependence equation become larger, for 87.5% of the tested 

cases the I test additionally needed to perform one GCD test and for the other 12.5% of checked 

cases the I test additionally needed to perform two GCD tests. For any original cases examined 

without do-loop normalization, the coefficient for every variable was 1 or 1, so the non-

continuous I test did not need to additionally perform one GCD test. The total number for 

computation of the Banerjee bound for all of the cases tested was 310 times for both the I test 

and the non-continuous I test. As indicated in Table 2, the I test and the non-continuous I test 

obtained the same precise results for the cases that were tested. As shown in Table 2, the non-

continuous I test extended the I test to directly deal with a Fortran do-loop with non-singular 

increments. Simultaneously, the execution time of data dependence analysis for parallel/vector 

compilers could be efficiently improved. 

 

 

5. CONCLUSIONS 

The research in [10] stated the following: (1) the cost of scanning array subscripts and loop 

bounds to build a dependence problem was typically 2 to 4 times the copying cost (the cost of 

building a system of dependence equations) for the problem; and (2) the dependence analysis 

cost for more than half of the simple arrays tested was typically 2 to 4 times the copying cost. 

However, the dependence analysis cost for other simple arrays and all of the regular, convex, 

and complex arrays tested was more than 4 times that of the copying cost. Based on these results 

we can conclude that for simple arrays, the analysis cost of data dependence for a parallelizing/ 

vectorizing compiler generally occupies about 29% to 57% of the total compilation time. But, 

for complex arrays, the analysis cost of dependence testing takes more than 57% of the total 

compilation time. Therefore, enhancing the performance of dependence testing may result in a 

significant improvement on the compilation performance of a parallelizing/vectorizing compiler. 

The Power test is a combination of the Fourier-Motzkin variable elimination method with an 

extension of Euclid’s GCD algorithm [11]. The Omega test combines new methods for 

eliminating equality constraints with an extension of the Fourier-Motzkin variable elimination 

method [10]. The two tests currently have the highest precision and the widest applicable range 
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in the field of data dependence analysis for testing arrays with linear subscripts. Wolfe [11] 

found that using the Fourier-Motzkin variable elimination method for dependence testing takes 

from 22 to 28 times longer than the Banerjee test. Wolfe also indicated that the Lambda test is a 

very precise and efficient method for testing two-dimensional coupled arrays with constant 

bounds. The authors [3,16,17,20,21,35] also indicated that the Omega test is a precise method. 

The Range test [6] and the access range test [7,18] currently have the highest precision and the 

widest applicable range for checking nonlinear arrays in the field of data dependence testing. 

The non-continuous I test can be viewed as involving the term-by-term computation of the 

Banerjee bounds. The Banerjee bound computation component of the non-continuous I test costs, 

at most, the same as a single Banerjee test. Depending on the application domains and environments, 

the non-continuous I test can be applied independently or together with other well-known 

methods to analyze the data dependence for linear-subscript array references. 
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