• Title/Summary/Keyword: One-dimensional Analysis

Search Result 2,649, Processing Time 0.029 seconds

An Experimental Study on Velocity Analysis by Automatic Velocity Analysis Algorithms in Layers Having Lateral Velocity Anomaly (수평적 속도변화대에서 자동속도분석 알고리즘을 이용한 속도분석 실험연구)

  • Yoon, Kwang Jin;Yang, Seung Jin
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.469-476
    • /
    • 1997
  • In the conventional velocity analysis, the peaks of a semblance panel are picked and the stacking velocities of the peaks are assumed as RMS velocities from which interval velocities are determined. This velocity analysis technique is correct only for horizontal homogeneous layes and incurs error in a layer whose velocity varies laterally. Tediousness of peak picking and error in velocity analysis can be reduced by automatic velocity analysis techniques. An automatic velocity analysis algorithm has been presented in order to improve these problems by considering the stacking velocity from the view point of interval velocity model and by relating the stacking velocity and the interval velocity with the traveltimes. In this paper, we apply the automatic velocity analysis method to simple models having lateral velocity anomaly to verify the effectivenesses and limits of this method. From the results of numerical experiments, we can determine the interval velocites without pickings of the stacking velocities in the one-dimensional velocity analysis and the general patterns of the laterally varying interval velocities appear in the two-dimensional case. However, the interval velocity and the depth of velocity anomaly determined by two-dimensional automatic velocity analysis are somewaht discrepant in those of the theoretical model.

  • PDF

Coupled Analysis of Thermo-Fluid-Flexible Multi-body Dynamics of a Two-Dimensional Engine Nozzle

  • Eun, WonJong;Kim, JaeWon;Kwon, Oh-Joon;Chung, Chanhoon;Shin, Sang-Joon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.70-81
    • /
    • 2017
  • Various components of an engine nozzle are modeled as flexible multi-body components that are operated under high temperature and pressure. In this paper, in order to predict complex behavior of an engine nozzle, thermo-fluid-flexible multi-body dynamics coupled analysis framework was developed. Temperature and pressure on the nozzle wall were obtained by the steady-state flow analysis for a two-dimensional nozzle. The pressure and temperature-dependent material properties were delivered to the flexible multi-body dynamics analysis. Then the deflection and strain distribution for a nozzle configuration was obtained. Heat conduction and thermal analyses were done using MSC.NASTRAN. The present framework was validated for a simple nozzle configuration by using a one-way coupled analysis. A two-way coupled analysis was also performed for the simple nozzle with an arbitrary joint clearance, and an asymmetric flow was observed. Finally, the total strain result for a realistic nozzle configuration was obtained using the one-way and two-way coupled analyses.

The effects of axial spacing on the unsteady secondary and performance in one-stage axial turbine (1단 터빈에서 축간격 변화가 비정상 이차유동 및 성능에 미치는 영향)

  • Park Junyoung;Baek JeHyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.537-540
    • /
    • 2002
  • Flow through turbomachinery has a very complex structure and is intrinsically unsteady. Especially, recent design trend to turbomachinery with short axial spacing makes the flow extremely complex due to the interaction between stator and rotor. Therefore, it is very necessary to clearly understand the complex flow structure to obtain the high efficiency turbomachinery. So, in this paper, the effects of axial spacing on the unsteady secondary flow performance in the one stage turbine are investigated by three-dimensional unsteady flow analysis. The three-dimensional solver is parallelized using domain decomposition and Message Passing Interface(MPI) standard to overcome the limitation of memory and the CPU time in three-dimensional unsteady calculation. A sliding mesh interface approach has been implemented to exchange flow information between blade rows.

  • PDF

Compatibility inspection for the way for Decision about Bight Flow Profile of Standard River Design (하천설계기준의 만곡부 수면형 결정 방법에 대한 적용성 검증)

  • Choi, Han-Kuy;Che, Hong-Gi;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.43-51
    • /
    • 2006
  • Through the result of calculating the deviation between the value calculated from two-dimensional number formula, one-dimensional number interpretation, and curving part water surface type calculation method, we could confirmed that the deviation is reduced more than 50% when we use curving part water surface type calculation method. Also it was confirmed that there occurs the reduction rate of maximum 59% as the result of comparing with one-dimensional number interpretation since the reduction rate of safe room height was 20%, in 500 CMS of flood water quantity when we planted the construction of levee by curving part water surface type calculation method. And therefore, we have confirmed that the curving water surface type calculation method can be used as a simple formula in rivers with water quantity less than 500 CMS that flows in and out in Jess than 90 degree angle.

  • PDF

Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7 (차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델)

  • 손정현;유완석;김두현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

Analysis of Fault Diagnosis for Current and Vibration Signals in Pumps and Motors using a Reconstructed Phase Portrait

  • Jung, Young-Ok;Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 2015
  • In this paper, we measure the current and vibration signals of one-dimensional time series that occur in a motor and pump, respectively. These machines are representative rotary and pumping machines. We also eliminate unnecessary components such as noise by pre-processing the current and vibration signals. Then, in order to diagnose fault signals for the pump and motor, we transform from one-dimensional time series to a two-dimensional phase portrait using Takens’ embedding method. After this transformation, we review the variation in the pattern according to the fault signals.

FracSys와 UDEC을 이용한 사면 파괴 양상 분석 통계적 절리망 생성 기법 및 Monte Carlo Simulation을 통한 사면 안정성 해석

  • 김태희;최재원;윤운상;김춘식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.651-656
    • /
    • 2002
  • In general, the most important problem in slope stability analysis is that there is no definite way to describe the natural three-dimensional Joint network. Therefore, the many approaches were tried to anlayze the slope stability. Numerical modeling approach is one of the branch to resolve the complexity of natural system. UDEC, FLAC, and SWEDGE are widely used commercial code for the purpose on stability analysis. For the purpose on the more appropriate application of these kind of code, however, three-dimensional distribution of joint network must be identified in more explicit way. Remaining problem is to definitely describe the three dimensional network of joint and bedding, but it is almost impossible in practical sense. Three dimensional joint generation method with random number generation and the results of generation to UDEC have been applied to settle the refered problems in field site. However, this approach also has a important problem, and it is that joint network is generated only once. This problem lead to the limitation on the application to field case, in practical sense. To get rid of this limitation, Monte Carlo Simulation is proposed in this study 1) statistical analysis of input values and definition of the applied system with statistical parameter, 2) instead of the consideration of generated network as a real system, generated system is just taken as one reliable system, 3) present the design parameters, through the statistical analysis of ouput values Results of this study are not only the probability of failure, but also area of failure block, shear strength, normal strength and failure pattern, and all of these results are described in statistical parameters. The results of this study, shear strength, failure area, pattern etc, can provide the direct basement on the design, cutoff angle, support pattern, support strength and etc.

  • PDF

Two-Dimensional Analysis of the Characteristics at Heterojunction of MODFET Using FDM (유한 차분법을 이용한 MODFET의 이차원적 해석)

  • Jung, Hak-Gi;Lee, Moon-Key;Kim, Bong-Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1373-1379
    • /
    • 1988
  • This paper describes a two-dimensional analysis of the potential distribution and electron concentration of the MODFET at channel using FDM. More exact analysis can be obtained by two-dimensional analysis which considers parasitic effects ignored in one-dimensional analysis. Using Poisson and Shrodinger equations, the potential distribution and the wave function are calculated within a constant error bound. As a result, the relations between the thickness of spacer, doping concentration of (n) AlGaAs layer, and the sheet density of the 2DEG (2 Dimensional Electron Gas) of MODFET at channel are suggested quantitively. The sheet density of the 2DEG is increased as the thickness of the spacer is decreased of the doping concentration of the (n)AlGaAs layer is lowered.

  • PDF

Two-dimensional unsteady flow analysis with a five region turbulence models for a simple pipeline system (단순한 관망체계에서 5영역 난류 모형을 이용한 2차원 부정류 흐름 해석 연구)

  • Kim, Hyun Jun;Kim, Sangh Hyun;Baek, Da Won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.971-976
    • /
    • 2018
  • An accurate analysis of pipeline transient is important for proper management and operation of a water distribution systems. The computational accuracy and its cost are two distinct components for unsteady flow analysis model, which can be strength and weakness of three-dimensional model and one-dimensional model, respectively. In this study, we used two-dimensional unsteady flow model with Five-Region Turbulence model (FRTM) with the implementation of interaction between liquid and air Since FRTM has an empirical component to be determined, we explored the response feature of two-dimensional flow model. The relationship between friction behaviour and the variation of undetermined parameter was configured through the comparison between numerical simulations and experimental results.

A Comparison of Low-Dimensional Reactor Kinetics Analysis Methods with Modified Borresen's Coarse-Mesh Method (저차원 원자로 동특성 해법과 다차원 수정형 Borresen 소격해법의 비교)

  • Kim, Chang-Hyo;Lee, Gyu-Bok
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.359-370
    • /
    • 1990
  • This study concerns with comparing low-dimensional reactor kinetics methods with a three-dimensional kinetics method to be used for safety analysis of light water reactors in order to suggest means of preparing input parameters required for low-dimensional methods. For this purpose a one-dimensional finite difference two-group diffusion theory code ODTRAN and a third-order Hermit polynomial-based point kinetics code POTRAN are developed and used to obtain low-dimensional solutions to the LRA-BWR kinetics benchmark problem. The results are compared with a three-dimensional modified Borresen's coarse-mesh solution of the kinetics problem by CMSNACK code. Through this comparison some simple but practical means of preparing input parameters of low-dimensional kinetics analysis methods are suggested.

  • PDF