• 제목/요약/키워드: One-dimensional Analysis

검색결과 2,640건 처리시간 0.025초

수리모형과 수치해석을 통한 만곡부 하천의 수리학적 특성 비교 고찰 (A Comparative Study on Hydraulic Characteristics of Curved Channel by Hydraulic Model Experiments and Numerical Analysis)

  • 서동일;최한규
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.85-94
    • /
    • 2007
  • This study, regarding curved channel, was performed to compare and analyze hydraulic characteristics and the speed of water and water level for left bank and right bank through hydraulic model experiments and numerical analysis. Real channels that had characteristics of curved channel were selected as objectives. In order to easily operate one and two dimensional numerical analysis and comparison for total 2.4Km model channel, measuring point was set up as 200m. HEC-RAS model was applied as one dimensional numerical analysis program and SMS model was used as two dimensional numerical analysis program. In respect of speed of water, the average speed of water for right bank recorded 8.33m/s in a model experiment and 3.08m/s, 8.57m/s were average speed of water for right bank in one dimensional and two dimensional numerical analysis. The average speed of water of two dimensional numerical analysis was quite similar to that of model experiments. Also, as for water level, maximum observational errors between one and two dimensional numerical analysis for right and left bank of model experiments were 0.66m, 0.84m and 0.28m, 0.48m for each. It was found that two dimensional numerical analysis had a similar result to hydraulic model experiments. Accordingly, from the result of this study, two dimensional numerical analysis should be used rather than one dimensional numerical analysis, when numerical analysis for curved channel is conducted.

  • PDF

하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석 (Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream)

  • 안승섭;임동희;박노삼;곽태화
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

층간분리된 복합적층판의 에너지 방출률에 관한 연구 (A Study on the Energy Release Rate of Delaminated Composite Laminates)

  • 정성균
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

폭발하중에 대한 지하공동구조체의 3차원 공적 유한요소해석 (Three-Dimensional Dynamic Analysis of Underground Openings Subjected to Explosive Loadings)

  • 김선훈;김진웅;김광진
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.171-178
    • /
    • 1997
  • 본 연구에서는 발파로 인한 폭발하중에 대한 지하공동구조체의 3차원 동적유한요소해석을 수행하였다. 해석과정은 1차원 근원해석과정과 3차원터널해석과정의 2단계로 나누어 수행하였다. 1차원 근원해석에서는 장약공과 그 주변의 자유장을 포함하는 해석으로서 3차원 터널해석을 위한 입력하중의 계산작업을 수행한다. 본 연구에서 수행한 해석방법의 기능은 3차원 동적해석프로그램 MPDAP-3D에 추가되었으며, 향후 발파공법에 의한 지하공동구조체의 건설시 구조체의 안전성을 평가하는데 활용가능할 것으로 예상된다.

  • PDF

A Dispersion and Characteristic Analysis for the One-dimensional Two-fluid Mode with Momentum Flux Parameters

  • Song, Jin-Ho;Kim, H.D.
    • Nuclear Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.409-422
    • /
    • 2001
  • The dynamic character of a system of the governing differential equations for the one- dimensional two-fluid model, where the momentum flux parameters are employed to consider the velocity and void fraction distribution in a flow channel, is investigated. In response to a perturbation in the form of a'traveling wave, a linear stability analysis is peformed for the governing differential equations. The expression for the growth factor as a function of wave number and various flow parameters is analytically derived. It provides the necessary and sufficient conditions for the stability of the one-dimensional two-fluid model in terms of momentum flux parameters. It is demonstrated that the one-dimensional two-fluid model employing the physical momentum flux parameters for the whole range of dispersed flow regime, which are determined from the simplified velocity and void fraction profiles constructed from the available experimental data and $C_{o}$ correlation, is stable to the linear perturbations in all wave-lengths. As the basic form of the governing differential equations for the conventional one-dimensional two-fluid model is mathematically ill posed, it is suggested that the velocity and void distributions should be properly accounted for in the one-dimensional two-fluid model by use of momentum flux parameters.s.

  • PDF

수정압밀이론을 이용한 연약지반의 압밀해석 (Consolidation Analysis of Soft Clay by Using Modified Consolidation Theory)

  • 김수일;이준환;이승래;정상섬
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.565-572
    • /
    • 1994
  • 본 연구에서는 Terzaghi의 1차원 압밀이론 및 이를 수정한 수정 압밀이론과 성토하중에 의한 측방향으로의 하중감소를 고려하여 연약지반상에서의 압밀거동을 1차원 및 2차원 해석을 통하여 비교분석하였다. 분석결과 1차원 압밀이론을 이용한 성토측면 부근에서의 압밀해석에서는 실측치보다 과다추정하고 있었으며 Terzaghi의 1차원 압밀이론보다는 간극비 및 투수계수의 변화를 고려한 수정압밀이론이 보다 실측치에 근접한 방법임을 알 수 있었다. 1차원 압밀이론 및 지중응력 분포이론을 이용한 각 지점별 압밀해석결과와 2차원 압밀이론으로 해석한 결과를 비교해 보았을 때, 특히 성토측면부에서는 2차원 해석결과보다 1차원 해석결과가 더 크게 과다추정하는 결과를 나타내고 있었으나 시간별 침하의 추세는 거의 차이가 없었으며 물성치의 정확한 선정이 가능하다면 1차원 이론에 의한 해석도 간편하고 합리적인 방법임을 알 수 있었다.

  • PDF

1차원 표면유동의 정량화에 따른 직사각형 용기내의 정상유동 해석 (Analysis of Steady Flows in a Rectangular Container with a Characterization of the Free Surface by One-Dimensional Motion)

  • 변민수;서용권
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.227-231
    • /
    • 2001
  • Analysis of two-dimensional unsteady flows with a free surface in a rectangular container subject to a linear reciprocating force is performed by numerical and experimental methods. FVM is used for the numerical computation of the two-dimensional flows. We consider the surface tension as well as the viscous/elastic properties of the free surface. One-dimensional analysis as well as experiment is used in establishing the free surface properties. The steady recirculatory flow is visualized by a laser sheet. It is shown that the one-dimensional analysis provides useful informations associated with the free surface properties.

  • PDF

속이 빈 원관에서 1차원적인 열전달 해석의 오차 (Errors in One-Dimensional Heat Transfer Analysis in a Hollow Cylinder Feedwater Pipe)

  • 강형석
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.689-696
    • /
    • 1996
  • A comparison is made of the heat loss from a hollow cylinder, computed using an one-dimensional analytic method and a two-dimensional separation of variables scheme. For a two-dimensional analysis, the temperature of the inner surface as a boundary condition can be varied along the length of the cylinder by varing the temperature variation factor, b. Comparisons of the heat loss from the hollow cylinder using these two methods are given as a function of non-dimensional cylinder length, the ratio of the outer radius to the inner radius, temperature variation factor and Biot number. The result shows that the value of the heat loss from the hollow cylinder obtained using the one-dimensional analytic method becomes close to the value given by the two-dimensional separation of variables scheme as the value of Biot number and the non-dimensional hollow cylinder length increase and as the ratio of the outer radius to the inner radius decreases.

중형버스 다출구 덕트의 최적설계에 관한 해석적 고찰 (A Numerical Analysis on the Optimum Design of a Duct with Multiple Outlets in a Medium Bus)

  • 김민호;천인범;이대훈
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.223-233
    • /
    • 2002
  • The air distribution duct with multiple outlets is an essential part of automotive air-conditioning system In a bus. The estimation of airflow rate in an automotive air-conditioning duct is typically very complicate due to large variations in cross-sectional area and abrupt changes in flow direction, as well as unbalanced distribution of the flow. In this paper, the flow characteristic in a duct with multiple outlets is investigated through experiment, CFD simulation and a one-dimensional simulation. Numerical simulations have been performed for two simplified air conditioning ducts with multiple outlets used in a medium bus. The three dimensional Navier-Stokes code was used to evaluate the overall pressure, velocity Held, and distribution rate at each diffuser according to the change of various design parameters such as ratio of cross-sectional area and radius of bifurcated region. In addition, a one-dimensional program based on Bernoulli equation was developed to obtain optimized diffuser area required to equalize discharge flow rate at each outlet. As a result of this study, optimized diffuser area of design variable by one-dimensional program was very reasonable as compared to the trend deduced from CFD Simulation. Therefore, the simple and convenient one-dimensional analysis developed in this study can be applied in practical design procedure for air-conditioning duct.

복합 덕트시스템의 유량분배에 관한 1차원 해석의 적합성 (Adaptability of one-dimensional analysis for the flow distribution of a complex duct system)

  • 이승철;이재헌
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.579-587
    • /
    • 1999
  • The flow distribution characteristics in a complex duct system have been investigated in this paper by three means, namely experimental measurement, numerical simulation and the Extended T-method analysis. While the exit flow rates predicted by the three-dimensional CFD calculation and those given by the experiment show a close agreement, the results from the one-dimensional Extended T-method are found to differ from the experiment by -22.2% to 26.3% for the various exits. These discrepancies may be attributed to the underlying limitation concerning the fitting loss coefficients, which assume that the flow in front of the fittings is fully developed. It is proposed that, in order to analyse the three-dimensional flow distributions in a complex duct system by one-dimensional analysis such as the Extended T-method, further Improvements to the fitting loss coefficients should be made.

  • PDF