• Title/Summary/Keyword: One-Stage Turbine

검색결과 78건 처리시간 0.023초

막오염에 의한 압축기 성능 저하가 발전용 가스터빈 설계점 성능에 미치는 영향에 관한 연구 (Performance degradation due to compressor fouling of an industrial gas turbine operating at design point condition)

  • 서진식;손정락;김재환;김동섭;노승탁
    • 한국유체기계학회 논문집
    • /
    • 제6권3호
    • /
    • pp.36-43
    • /
    • 2003
  • Operating performance of industrial gas turbines in combined cycle power plants depends upon atmospheric conditions. Compressor fouling caused by airborne particles in the atmosphere and their adhesions on compressor blades is one of critical phenomena related to the performance degradation of industrial gas turbines. Compressor fouling provokes increase of pressure loss in inlet duct, decrease of mass flow rate of intake air and decrease of compressor stage efficiency. In this study, impacts of compressor fouling on the performance of an industrial gas turbine operating at design point condition are investigated analytically. As results, it is found that the reduction of produced power with decreased mass flow rate of intake air caused by narrowed flow area by the adhesion of airborne particles on compressor blades is the most dominant impact on the gas turbine performance by the compressor fouling phenomena.

150 MW급 가스터빈 저압 1단 회전익 교체주기 연장 가능성 연구 (Extension Feasibility on Replacement Cycle of Rotor Blade Equipped for Low Pressure First Stage in a 150 MW Gas Turbine)

  • 임종호;이재헌
    • 플랜트 저널
    • /
    • 제9권4호
    • /
    • pp.31-36
    • /
    • 2013
  • 국내 A 복합발전소에서 운전 중인 150 MW급 가스터빈 저압 1단 회전익의 교체주기 연장가능성을 다각적으로 모색하였다. 제작사가 추천한 24,000 등가운전시간 이상을 사용한 저압 1단 회전익의 외관검사, 열차폐코팅 제거 후 모재의 표면검사 및 균열검사를 각각 실시하였다. 또한 제작사별 150 MW급 가스터빈의 교체주기를 비교 분석하였다. 제작사가 추천한 24,000 등가운전시간 이상이 경과하여 27,000 등가운전시간을 운전한 저압의 외관을 검사한 결과 냉각홀 부위에 다수의 균열이 관찰되었다. 그러나 열차폐코팅을 제거한 상태에서 실시한 모재의 표면검사에서는 균열이 거의 관찰되지 않았으며, 모재까지 진행된 일부 미세 균열에 대해서는 절단면 검사를 통하여 균열깊이가 기능에 영향을 미치지 않는 수준임을 확인하였다. 따라서 본 연구대상 가스터빈 저압 1단 회전익의 교체정비주기는 현행 24,000 등가운전시간에서 3,000 등가운전시간의 연장이 가능할 것으로 보인다. 또한 연구대상 저압 1단 회전익에 대하여 제작사가 추천한 교체주기는 타제작사 1단 회전익 교체주기의 2/3 수준으로 짧게 설정되어 있어 교체주기 연장이 가능할 것으로 판단된다.

  • PDF

20kW OTEC 터빈 개발 (20kW Turbine Development for OTEC System)

  • 한상조;서종범
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.38-43
    • /
    • 2014
  • In Ocean, the temperature of the deep sea water is always lower than that of the surface sea water. The temperature difference between the surface water and deep sea water is about $20^{\circ}C$. Based on thermodynamics, this temperature difference can be converted into mechanical power. The mechanical power can be converted to electricity through a generator. However, the temperature difference is relatively small compared with that of traditional steam turbines. It is difficult to apply the steam turbine technology for this small temperature difference directly. Therefore, the turbine for OTEC system using low temperature difference should be designed to meet the system requirement. The present study focuses on the development of the turbine for 20 kW OTEC system using R32. The paper includes the determination of working fluids, meridional design, turbine layout and 3D CFD results. With off-design points analysis, the full performance of 20kW OTEC turbine is investigated. Through the research, one stage radial type turbine with R32 as working fluid is successfully developed and can be applied to other high temperature heat source.

터보펌프 부분흡입형 터빈 공력설계

  • 이은석;김진한
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.35-44
    • /
    • 2004
  • 본 연구에서는 액체로켓에 쓰이는 터보펌프 부분흡입현 터빈의 1차원 공력계산 및 구조설계에 대해 고찰하였다. 터빈은 노즐, 로터, 후방유도익등으로 나누어 각각에 대해 공력 특성을 계산식으로부터 유도하였고 CFD 계산을 통해 그 타당성을 입증하였다. 속도삼각형과 같은 1차원 설계 변수들은 평균선 방정식을 이용하여 수행되었고 2-D, 3-D CFD 계산을 통해 보정되었다. 블레이드 익형은 CFD 최적화기법을 통해 결정되었다. 향후, 열응력계산, 구조응력계산을 통한 열적/구조적 거동에 대해 연구가 필요하다.

  • PDF

KGT-74소형 가스터빈 블레이드의 진동 신뢰성 평가 (Evaluation of Blades Vibration Reliabilities of KGT-74 Small Gas Turbine)

  • 김영철;이동환;이안성
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.410-415
    • /
    • 2004
  • To ensure a safe operation of the prototype KGT-74 kW small gas turbine, vibrational reliabilities of the compressor 1st, 2nd, and 3rd stages and turbine blades have been estimated and reviewed. FE analyses have been carried out to obtain the natural vibration characteristics of the blades, and impact modal testings have been performed on every each one of the blades to measure their 1st natural frequencies. Then, the Campbell diagram analyses have been carried out to judge the safety of the blades from resonant failures up to 6k harmonics. Results show that the compressor 1st stage blade is exposed to a potential resonant failure with 3k harmonic around a rated speed of 30,000 rpm but that the other compressor 2nd and 3rd stages and turbine blades are safe from resonant failures. Finally, 27,900 rpm is selected as the safe operation limit for the KGT-74 ㎾ gas turbine relative to the blade vibrations.

KGT-74 소형 가스터빈 블레이드의 진동 신뢰성 평가 (Evaluation of Blades Vibration Reliabilities of KGT-74 Small Gas Turbine)

  • 이안성;김영철;이동환;나언주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.297-302
    • /
    • 2003
  • To ensure a safe operation of the prototype KGT-74 ㎾ small gas turbine, vibrational reliabilities of the compressor 1st, 2nd. and 3rd stages and turbine blades have been estimated and reviewed. FE analyses have been tarried out to obtain the natural vibration characteristics of the blades, and impact modal testings have been performed on every each one of the blades to measure their 1st natural frequencies. Then, the Campbell diagram analyses have been carried out to Judge the safety of the blades from resonant failures up to 6k harmonics. Results show that the compressor 1st stage blade is exposed to a potential resonant failure with 3k harmonic around a rated speed of 30,000rpm but that the other compressor 2nd and 3rd stages and turbine blades are safe from resonant failures. Finally. 27,900 rpm Is selected as the safe operation limit for the KGT-74 ㎾ gas turbine relative to the blade vibrations.

  • PDF

풍력발전기의 확률론적 발전비용 절감기여도 평가 (Probabilistic Production Cost Credit Evaluation of Wind Turbine Generators)

  • 박정제;오량;최재석;차준민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.312-314
    • /
    • 2008
  • This paper develops an algorithm for probabilistic production cost credit evaluation of wind turbine generators (WTG) with multi-state. Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. Case study demonstrates that the wind speed credit in view point of economics can be assessed by using the proposed methodology.

  • PDF

1.5단 축류터빈에서의 Clocking 효과에 관한 수치적 연구 (NUMERICAL STUDY ON THE CLOCKING EFFECT IN A 1.5 STAGE AXIAL TURBINE)

  • 박종일;최민석;백제현
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.1-8
    • /
    • 2006
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since the first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

1.5단 축류 터빈에서의 Clocking 효과에 관한 수치적 연구 (Numerical Study on the Clocking Effect in a 1.5 Stage Axial Turbine)

  • 박종일;최민석;백제현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.473-480
    • /
    • 2005
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since be first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

  • PDF

1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 - (Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis-)

  • 조규식;이헌석;손정락
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.