• Title/Summary/Keyword: One-Slope Model

검색결과 296건 처리시간 0.026초

무한사면해석기법과 GIS를 이용한 사면 재해 위험성 분석 및 검증 (Analysis and Verification of Slope Disaster Hazard Using Infinite Slope Model and GIS)

  • 박혁진;이사로;김정우
    • 자원환경지질
    • /
    • 제36권4호
    • /
    • pp.313-320
    • /
    • 2003
  • 사면재해는 강우기에 반복적으로 발생하는 지질재해의 하나로 우리나라의 경우 연평균 약 23명 정토의 인명피해가 사면재해로 인해 발생하고 있으며, 이는 자연재해로 인한 인명피해 중 약 25% 정도를 차지하는 수치이다. 그러나, 이러한 사면재해는 다양하고 복합한 지질 및 지형 특성과 갉은 공간적인 특성과 집중호우와 같은 기후특성에 의해 좌우되므로 사면재해 예측이나 위험성에 대한 정량적인 산정을 무척 어려운 실정이다. 따라서, GIS를 이용한 위험성분석이나 확률을 이용한 다양한 기법이 활용되고 있다. 특히, GIS를 이용한 기법은 광역적인 지역에 대하여 방대한 양의 자료를 효율적으로 처리 및 분석을 수행함으로서 사면재해 관련 연구에 폭 넓게 활용되고 있다 본 연구에서 사용된 무한사면해석기법은 사면재해의 발생여부와 관련요인간의 연관성에 대한 단순한 통계적인 분석에 의한 기존 기법의 한계점을 보완하고 사면재해발생과 관련된 역학적인 검토를 수행하기 위하여 제안되었다. 본 연구 결과에 의하면 사면재해가 발생했던 지점과의 비교를 농하여 지반이 완전히 포화된 경우, 즉 m=1인 경우 무한사면모델에서 불안정하다고 해석된 지역에서 전체 사면재해의 87.5%가 발생하였음을 보여주고 있어 사면재해에 대한 해석기법으로서의 착용가능성을 보여주고 있다.

점토굴착 사면의 거동에 관한 원심모형실험 및 수치해석 (Centrifuge Model Experiments and Numerical Analyses on the Behaviour of Excavated Clayey Soil)

  • 최민수;정길수;박병수;유남재
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.55-62
    • /
    • 2005
  • This paper is the results of experimental and numerical works on analyzing the geotechnical engineering behavior and characteristics of excavated clay slope formed by the method of excavated replacement which is one of treatments in soft soil ground. For the centrifuge model tests, models of excavated clay slope were prepared by remolding the marine clayey soil sampled from the field. Tests were performed with changing the slope to investigate the behavior of them. On the other hand, numerical analyses were carried out to analyze the change of safety factor against instability of slope with time. Changes of pore water pressure, shear strength and displacement were also investigated. As results of centrifuge model tests with slopes of 1:1.5 and 1:3 using the confining body of simulating the effect of excavation, for the case of 1:1.5, slope failure occurred right after remove the confining body whereas relatively small displacements within the range of 3.2mm, implying to maintain the stability of slope, were observed for the case of 1:3 slope. From the results of numerical analyses using the software of PLAXIS to investigate the stability of slope after excavation, the minimum safety factor against slope failure was 1.28 for the case of 1:3 slope. The further researches in the future are required with considerations of build up of static pore water pressures during acceleration of centrifuge, depth of excavation influencing the behavior of the slope and permeability of the slope since excavation of the slope was not simulated well resulted from the limitations of apparatus at the stage of excavation during the centrifuge tests.

  • PDF

하천 만곡률과 홍수량에 따른 수면경사도 산정 (Estimation of the Water Surface Slope by the Flood Discharge with River Bend Curvature)

  • 최한규;이문희;백효선
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.129-137
    • /
    • 2006
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

  • PDF

강우에 의한 사면붕괴에 관한 2차원 수치모의 (Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure)

  • 램 크리쉬나 레그미;정관수;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF

성토사면의 붕괴에 관한 실험적 연구 (Experimental Study on the Slope Failure of Embankment)

  • 강우묵;이달원;지인택;조재홍
    • 한국농공학회지
    • /
    • 제35권3호
    • /
    • pp.47-62
    • /
    • 1993
  • The laboratorv model test was carried out to investigate the behavior of pore water pressure, the critical amount of rainfall for slope failure, the pattern of failure, and the variation of seepage line at the slope with the uniform material of embankment by changing the slope angles and rainfall intensities. The results were was summarised as follows : 1.At the beginning stage of rainfall, the negative pore pressure appeared at the surface of slope and the positive pore pressure at the deep parts. But, the negative one turned into the positive one as the rainfall continued and this rapidly increased about 50 to 100 minutes before the slope failure. 2.The heavier the rainfall intensity, the shorter the time, and the milder the slope, the longer the time took to reach the failure of slope. 3.As the angle of the slope became milder, the critical amount of rainfall for slope failure became greater. 4.Maximum pore water pressure was 10 to 40g/cm$^2$ at the toe of slope and 50 to 90g/cm$^2$at the deep parts. 5.In the respect of the pattern of slope failure, surface failure of slope occurred locally at the toe of slope at the A-soil and failure of slope by surface flow occurred gradually at the top part of slope at the B-soil. 6.As the rainfall continued and the saturation zone in the embankment was formed, the seepage line went rapidly up and also the time to reach the total collapse of slope took longer at the B-soil. 7.As the position of the seepage line went up and the strength parameter accordingly down, the safety factor was 2.108 at the A-soil and 2.150 at the B-soil when the slope occured toe failure. Minimum safety factor was rapidly down to 0.831 at the A-soil and to 0.936 at the B-soil when the slope collapsed totally at the top part of slope.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spatial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • 한국수자원학회논문집
    • /
    • 제33권S1호
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triagulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triagular facets : the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally ; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spacial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2000년도 학술발표회 논문집
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triangulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular facets: the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

An Accurate Radio Channel Model for Wireless Sensor Networks Simulation

  • Alejandro Martfnez-Sala;Jose-Maria Molina-Garcia-Pardo;Esteban Egea-Lopez;Javier Vales-Alonso;Leandro Juan-Llacer;Joan Garcia-Haro
    • Journal of Communications and Networks
    • /
    • 제7권4호
    • /
    • pp.401-407
    • /
    • 2005
  • Simulations are currently an essential tool to develop and test wireless sensor networks (WSNs) protocols and to analyze future WSNs applications performance. Researchers often simulate their proposals rather than deploying high-cost test-beds or develop complex mathematical analysis. However, simulation results rely on physical layer assumptions, which are not usually accurate enough to capture the real behavior of a WSN. Such an issue can lead to mistaken or questionable results. Besides, most of the envisioned applications for WSNs consider the nodes to be at the ground level. However, there is a lack of radio propagation characterization and validation by measurements with nodes at ground level for actual sensor hardware. In this paper, we propose to use a low-computational cost, two slope, log-normal path­loss near ground outdoor channel model at 868 MHz in WSN simulations. The model is validated by extensive real hardware measurements obtained in different scenarios. In addition, accurate model parameters are provided. This model is compared with the well-known one slope path-loss model. We demonstrate that the two slope log-normal model provides more accurate WSN simulations at almost the same computational cost as the single slope one. It is also shown that the radio propagation characterization heavily depends on the adjusted model parameters for a target deployment scenario: The model parameters have a considerable impact on the average number of neighbors and on the network connectivity.

강우를 고려한 사면내 요부(凹部)에서의 안정성 해석 (Stability Analysis of the Concave Zone in a Slope Considering Rainfall)

  • 사공명;임경재
    • 한국지반공학회논문집
    • /
    • 제21권9호
    • /
    • pp.77-86
    • /
    • 2005
  • 집중강우로 인한 철도연변 사면의 활동 및 선로의 유실은 철도 운행에 있어 불안정성을 유발하는 요인으로서 이에 대한 적절한 평가기법이 요구된다. 현장조사 결과 강우로 인한 사면의 활동은 사면내 흙의 특성, 강우강도, 사면의 3차원상 형상과 지층의 지질학적 조건과 상관이 있는 것으로 관측되었다. 본 연구에서는 사면의 활동패턴 중 사면내 요부에서 주변 수계로부터 흘러 들어온 표면유출수로 인하여 발생하는 사면의 활동을 대상으로 하고 있다. 표면유출수의 발생은 Philip 공식에서 계산된 침투율과 강우강도의 비교를 통해서 판정되었다. 표면유출수의 심도를 계산하기 위하여 합리식과 Manning 공식을 적용하였으며, 심도별 사면의 안전율을 구하기 위하여 Iverson 모텔을 수정하여 적용하였다. 수정된 Iverson 모델의 적용에 있어 표면 유출수의 심도를 고려하므로 최대 동수경사가 1 이상의 경우를 고려하였다.

의사결정나무모형을 이용한 편마암 지역에서의 급경사지재해 예측기법 개발 (Development to Prediction Technique of Slope Hazards in Gneiss Area using Decision Tree Model)

  • 송영석;채병곤
    • 지질공학
    • /
    • 제18권1호
    • /
    • pp.45-54
    • /
    • 2008
  • 본 연구에서는 기 조사된 편마암 지역에서의 급경사지재해 발생지역 및 미발생지역에 대한 현장조사자료 및 토질시험자료를 토대로 통계적인 분석방법인 의사결정나무모형을 이용하여 급경사지재해 예측기법을 개발하였다. 편마암 지역에서의 조사된 급경사지재해 자료는 서울 및 경기지역에서 1998년 집중호우로 발생된 104개소구간이다. 이 가운데 예측모델 개발에 활용된 자료수는 결측치를 제외한 61개소로서, 급경사지재해 발생구간 34개소와 미발생구간 27개소이다. 의사결정나무모형을 이용한 통계적인 분석은 카이제곱 통계량, 지니 지수 및 엔트로피 지수를 적용하여 실시하였다. 분석결과 사면경사, 포화도 및 사면고도가 분리기준으로 선택되었으며, 엔트로피 지수를 이용한 의사결정나무모형 예측모델이 정확도가 가장 높은 것으로 나타났다. 선정된 급경사지재해 예측모델의 분리기준은 최상위부터 사면경사, 포화도 및 사면고도의 순서로 선택되었으며, 각각의 분리기준치는 사면경사의 경우 $17.9^{\circ}$, 포화도의 경우 52.1%, 사면고도의 경우 320m로 결정되었다.