• 제목/요약/키워드: One point detection

검색결과 374건 처리시간 0.023초

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

기간기반 복합 이벤트 패턴 검출 (Detection of Complex Event Patterns over Interval-based Events)

  • 강만모;박상무;김상락;김강현;이동형
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.201-209
    • /
    • 2012
  • 시점기반 복합 이벤트 처리는 각 이벤트에 하나의 타임스탬프를 사용하여 즉각적인 이벤트를 처리한다. 하지만, 시점기반의 이벤트 처리로는 이벤트의 활동 기간이 중요한 역할을 하는 금융, 멀티미디어, 의학, 기상학 같은 분야에서 복합적인 시제 관계를 표현하기에는 불충분하다. 실세계의 애플리케이션 분야에서, 이벤트는 기간을 가지며, 두 종류 이상의 이벤트는 시간적으로 겹쳐질 수도 있고, 하나의 이벤트가 다른 이벤트를 포함할 수도 있다. 이런 종류의 이벤트들에 대한 관계는 시점기반 이벤트처럼 연속적이지 않을 수도 있다. 본 논문에서는 기간기반 이벤트를 사용하여 복합 이벤트의 패턴을 검출하는 방법을 설계하고 구현한다. 기간기반 이벤트는 시점기반 이벤트가 다룰 수 없는 이벤트들 사이의 겹침과 포함관계를 표현할 수 있다. 기간기반 이벤트 연산자는 시작 끝점과 종료 끝점을 사용하여 이벤트의 기간을 나타내고, 기간기반 이벤트의 시퀀스를 표현하여 복합 이벤트 패턴을 검출할 수 있다. 본 논문에서는 복합 이벤트 패턴 검출의 효율성을 높이기 위해 활성 인스턴스 스택을 사용하는 알고리즘을 제시하며, 이벤트의 시퀀스를 구성할 때 중간 결과의 개수를 줄이기 위해 윈도우 푸시다운 기법을 적용하여 수행시간과 메모리의 효율을 높인다.

실시간 3차원 객체 검출을 위한 포인트 클라우드 기반 딥러닝 모델 경량화 (Lightweight Deep Learning Model for Real-Time 3D Object Detection in Point Clouds)

  • 김규민;백중환;김희영
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1330-1339
    • /
    • 2022
  • 3D 물체검출은 대체로 자동차, 버스, 사람, 가구 등과 같은 비교적 크기가 큰 데이터를 검출하는 것을 목표로 두어 작은 객체 검출에는 취약하다. 또한, 임베디드 기기와 같은 자원이 제한적인 환경에서는 방대한 연산량 때문에 모델의 적용이 어렵다. 본 논문에서는 1개의 레이어만을 사용하여 로컬 특징에 중점을 두어 작은 객체 검출의 정확도를 높였으며, 제안한 사전 학습된 큰 네트워크에서 작은 네트워크로의 지식 증류법과 파라미터 크기에 따른 적응적 양자화를 통해 추론 속도를 향상시켰다. 제안 모델은 SUN RGB-D Val 와 자체 제작한 모형 사과나무 데이터 셋을 이용하여 성능을 평가하였고 최종적으로 mAP@0.25에서 62.04%, mAP@0.5에서 47.1%의 정확도 성능을 보였으며, 추론 속도는 120.5 scenes per sec로 빠른 실시간 처리속도를 보였다.

증분형 엔코더를 이용한 로봇 관절의 절대위치 검출 (Detection of Absolute Position of Robot Joint Using Incremental Encoders)

  • 임재식;이영진
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.577-582
    • /
    • 2015
  • This paper proposes an efficient detection of absolute position of a robot joint using two incremental encoders. We considers a robot joint comprising a motor, a reducer, two encoders, and a motor drive. An incremental(first) encoder provides motor's rotor position or input position of reducer while another incremental(second) encoder does output position of the reducer. A table is made where the relationship between the first and the second encoder counts is recorded. The key point is placed where the table is constructed: when a pulse occurs in the second encoder, there exists a corresponding unique count value of the first encoder. The absolute position is detected using the table by searching the second encoder position corresponding to the first encoder count value when a pulse occurs in the second encoder. The proposed method needs a small rotation, as just one second encoder's pulse angle, for the initial absolute position detection.

Potts Automata를 이용한 영상의 에지 추출 (A Potts Automata algorithm for Edge detection)

  • 이석기;김석태;조성진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.767-770
    • /
    • 2001
  • Edge detection is one of issues with essential importance in the area of image process. An edge in image is a boundary or contour which a significant change occurs in image intensity. In the paper, we process edge detection algorithms which are based on Potts automata. The dynamical behavior of these automata is completely determined by Lyapunov operators for sequential and parallel update. If Potts Automata convergence to fixed points, then it can be used to image processing. From the generalized Potts automata point of view, we propose a Potts Automata technique for detecting edge. Based on the experimental results we discuss the advantage and efficiency.

  • PDF

얼굴 검출을 위한 캐스케이드 CNN 정확도에 관한 연구 (A Study on Cascaded CNN Accuracy for Face Detection)

  • 우위네마 조세린;이해연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.232-235
    • /
    • 2018
  • Convolutional Neural Network is arguably the most popular deep learning architecture that is one of the most attractive area of research since it has various applications including face detection and recognition. The cascaded CNN operates at multiple resolution and rejects the background regions in the fast low resolution stages. By considering that advantage, we carry out the study on accuracy of cascaded CNN for face detection applications. The key point for our study is to analysing and improving the accuracy of cascaded CNN by applying simulations of algorithm where by we used Google's Tensorflow GPU as deep learning framework.

딥러닝 기반 선박 부식 자동 검출을 위한 이미지 전처리 방안 연구 (A Study on Image Preprocessing Methods for Automatic Detection of Ship Corrosion Based on Deep Learning)

  • 윤광호;오상진;신성철
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.573-586
    • /
    • 2022
  • Corrosion can cause dangerous and expensive damage and failures of ship hulls and equipment. Therefore, it is necessary to maintain the vessel by periodic corrosion inspections. During visual inspection, many corrosion locations are inaccessible for many reasons, especially safety's point of view. Including subjective decisions of inspectors is one of the issues of visual inspection. Automation of visual inspection is tried by many pieces of research. In this study, we propose image preprocessing methods by image patch segmentation and thresholding. YOLOv5 was used as an object detection model after the image preprocessing. Finally, it was evaluated that corrosion detection performance using the proposed method was improved in terms of mean average precision.

Wavelet analysis based damage localization in steel frames with bolted connections

  • Pnevmatikos, Nikos G.;Blachowski, Bartlomiej;Hatzigeorgiou, George D.;Swiercz, Andrzej
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1189-1202
    • /
    • 2016
  • This paper describes an application of wavelet analysis for damage detection of a steel frame structure with bolted connections. The wavelet coefficients of the acceleration response for the healthy and loosened connection structure were calculated at each measurement point. The difference of the wavelet coefficients of the response of the healthy and loosened connection structure is selected as an indicator of the damage. At each node of structure the norm of the difference of the wavelet coefficients matrix is then calculated. The point for which the norm has the higher value is a candidate for location of the damage. The above procedure was experimentally verified on a laboratory-scale 2-meter-long steel frame. The structure consists of 11 steel beams forming a four-bay frame, which is subjected to impact loads using a modal hammer. The accelerations are measured at 20 different locations on the frame, including joints and beam elements. Two states of the structure are considered: healthy and damaged one. The damage is introduced by means of loosening two out of three bolts at one of the frame connections. Calculating the norm of the difference of the wavelet coefficients matrix at each node the higher value was found to be at the same location where the bolts were loosened. The presented experiment showed the effectiveness of the wavelet approach to damage detection of frame structures assembled using bolted connections.

스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘 (Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity)

  • 박용희;권오석
    • 인터넷정보학회논문지
    • /
    • 제6권5호
    • /
    • pp.85-95
    • /
    • 2005
  • 본 논문에서는 시퀀스 이미지에서 스케일-스페이스 필터링을 통한 특징점 추출과 질감도(texturedness) 비교를 적용한 특징점 추적 알고리즘을 제안한다. 특징점을 추출하기 위해서 정의된 오퍼레이터를 이용하는데, 이때 설정되는 스케일 파라미터는 특징점 선정 및 위치 설정에 영향을 주게 되며, 특징점 추적 알고리즘의 성능과도 관계가 있다. 본 논문에서는 스케일-스페이스 필터링을 통한 특징점 선정 및 위치 설정 방안을 제시한다. 영상 시퀀스에서, 카메라 시점 변화 또는 물체의 움직임은 특징점 추적 윈도우내에 아핀 변환을 가지게 하는데, 대응점 추적을 위한 유사도 측정에 어려움을 준다. 본 논문에서는 Shi-Tomasi-Kanade 추적 알고리즘에 기반하여, 아핀 변환에 비교적 견실한 특징점의 질감도 비교를 수행하는 최적 대응점 탐색 방법을 제안한다.

  • PDF

얼굴인식을 위한 실시간 하드웨어 설계 (A Realtime Hardware Design for Face Detection)

  • 서기범;차선태
    • 한국정보통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.397-404
    • /
    • 2013
  • 본 논문에서는 Adaboost알고리즘을 이용한 얼굴인식 하드웨어 시스템의 구조를 제안하였다. 제안된 하드에어 구조는 초당 30프레임을 가지며 실시간 처리가 가능하다. 또한 Adaboost알고리즘을 이용하여 얼굴 특징 데이터를 학습하였고, 영상 크기 축소부와 적분 영상 추출부 그리고 얼굴 비교부, 메모리 인터페이스부, 데이터 그룹화, 검출결과 표시부 등으로 구성되었다. 제안된 하드웨어 구조는 사이클당 1포인트를 계산 할 수 있는 구조로 속도의 향상을 가져오며 full HD($1920{\times}1080$)의 경우에는 총 사이클 수 $2,316,087{\times}30=69,482,610$로 약 70MHz의 속도를 가진다. 제안된 하드웨어 구조는 Verilog HDL로 디자인되었고, Mentor Graphics Modelsim을 이용하여 검증하였으며, 합성은 FPGA Xilinx Virtex5 XC5VLX330을 이용하여 칩의 대략 35%인 74,757 Slice LUT와 45MHz의 주파수에서 동작한다.