• Title/Summary/Keyword: One Equation Method

Search Result 1,552, Processing Time 0.041 seconds

A three-dimensional numerical model for shallow water flows using a free surface correction method (자유수면 보정기법을 이용한 3차원 천수유동 수치모형)

  • Jang, Won-Jae;Lee, Seung-Oh;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.181-185
    • /
    • 2007
  • A free-surface correction(FSC) method is presented to solve the 3-D shallow water equations. Using the mode splitting process, FSC method can simulate shallow water flows under the hydrostatic assumption. For the hydrostatic pressure calculation, the momentum equations are firstly discretized using a semi-implicit scheme over the vertical direction leading to the tri-diagonal matrix systems. A semi-implicit scheme has been adopted to reduce the numerical instability caused by relatively small vertical length scale compare to horizontal one. and, as the free surface correction step the final horizontal velocity fields are corrected after the final surface elevations are obtained. Finally, the vertical final velocity fields can be calculated from the continuity equation. The numerical model is applied to the calculation of the simulation of flow fields in a rectangular open channel with the tidal influence. The comparisons with the analytical solutions show overall good agreements between the numerical results and analytical solutions.

  • PDF

FLAP DEELECTION OPTIMZATION FOR TRANSONIC CRUISE PERFORMANCE IMPROVEMENT OF SUPERSONIC TRANSPORT WING

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.32-38
    • /
    • 2000
  • Wing flap deflection angles of a supersonic transport are optimized to improve transonic cruise performance. For this end, a numerical optimization method is adopted using a three-dimensional unstructured Euler code and a discrete adjoint code. Deflection angles of ten flaps; five for leading edge and five fur railing edge, are employed as design variables. The elliptic equation method is adopted for the interior grid modification during the design process. Interior grid sensitivities are neglected for efficiency. Also tested is the validity of the approximate gradient evaluation method for the present design problem and found that it is applicable for loading edge flap design in cases of no shock waves on the wing surface. The BFGS method is used to minimize the drag with constraints on the lift and upper surface Mach numbers. Two design examples are conducted; one is leading edge flap design, and the other is simultaneous design of leading edge and trailing edge flaps. The latter gave a smaller drag than the former by about two counts.

  • PDF

Extension of Source Projection Analytic Nodal $S_N$ Method for Analysis of Hexagonal Assembly Cores

  • Kim, Tae-Hyeong;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.488-499
    • /
    • 1996
  • We have extended the source projection analytic nodal discrete ordinates method (SPANDOM) for more flexible applicability in analysis of hexagonal assembly cores. The method (SPANDOM-FH) does not invoke transverse integration but instead solves the discrete ordinates equation analytically after the source term is projected and represented in hybrid form of high-order polynomials and exponential functions. SPANDOM-FH which treats a hexagonal node as one node is applied to two fast reactor benchmark problems and compared with TWOHEX. The results of comparison indicate that the present method SPANDOM-FH predicts accurately $k_eff$ and flux distributions in hexagonal assembly cores. In addition, SPANDOM-FH gives the continuous two dimensional intranodal scalar flux distributions in a hexagonal node. The reentering models between TWOHEX and SPANDOM were also compared and it was confirmed that SPANDOM's model is more realistic. Through the results of benchmark problems, we conclude that SPANDOM-FH has the sufficient accuracy for the nuclear design of fast breeder reactor (FBR) cores with hexagonal assemblies.

  • PDF

Numerical Solutions of Compressible Navier-Stokes Equations on Hybrid Meshes Using Newton-GMRES Method (Newton-GMRES 법을 사용한 혼합격자에서의 압축성 Navier-Stoke 방정식 수치 해석)

  • Choi Hwan-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.178-183
    • /
    • 2000
  • An efficient Newton-GMRES algorithm is presented for computing two-dimensional steady compressible viscous flows on unstructured hybrid meshes. The scheme is designed on cell-centered finite volume method which accepts general polygonal meshes. Steady-state solution is obtained with pseudo-transient continuation strategy. The preconditioned, restarted general minimum residual(GMRES) method is employed in matrix-free form to solve the linear system arising at each Newton iteration. The incomplete LU fartorization is employed for the preconditioning of linear system. The Spalart-Allmars one equation turbulence model is fully coupled with the flow equations to simulate turbulence effect. The accuracy, efficiency and robustness of the presently developed method are demonstrated on various test problems including laminar and turbulent flows over flat plate and airfoils.

  • PDF

SOLVING MATRIX POLYNOMIALS BY NEWTON'S METHOD WITH EXACT LINE SEARCHES

  • Seo, Jong-Hyeon;Kim, Hyun-Min
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.2
    • /
    • pp.55-68
    • /
    • 2008
  • One of well known and much studied nonlinear matrix equations is the matrix polynomial which has the form $P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_m$, where $A_0$, $A_1$, ${\cdots}$, $A_m$ and X are $n{\times}n$ complex matrices. Newton's method was introduced a useful tool for solving the equation P(X)=0. Here, we suggest an improved approach to solve each Newton step and consider how to incorporate line searches into Newton's method for solving the matrix polynomial. Finally, we give some numerical experiment to show that line searches reduce the number of iterations for convergence.

  • PDF

A LMR Core Thermal-Hydraulics Code Based on the ENERGY Model

  • Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.406-416
    • /
    • 1997
  • A computational method is developed for predicting the steady-state temperature field in an LMR core. Detailed core-wide coolant temperature profiles are efficiently calculated using the simplified energy equation mixing model[1] and the subchannel analysis method. The $\theta$-method is employed for discretizing the energy equations in the axial direction. The interassembly coupling is achieved by interassembly gap flow. Cladding and fuel temperatures are calculated with the one-dimensional conduction model and temperature integrals of conductivities. The accuracy of the method is tested by performing several benchmark calculations for too LMR problems. The results indicate that the accuracy is comparable to the other methods based on ENERGY model. It is also shown that the implicit scheme for the axial discretization is more efficient than the explicit scheme.

  • PDF

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

Bianry Searching Algorithm for HIgh Sped Scene Change Indexing of Moving Pictures (동영상의 고속 장면분할을 위한 이진검색 알고리즘)

  • Kim, Seong-Cheol;O, Il-Gyun;Jang, Jong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1044-1049
    • /
    • 2000
  • In detection of a scene change of the moving pictures which has massive information capacity, the temporal sampling method has faster searching speed than the sequential searching method for the whole moving pictures, yet employed searching algorithm and detection interval greatly affect searching time and searching precision. In this study, the whole moving pictures were primarily retrieved by the temporal sampling method. When there exist a scene change within the sampling interval, we suggested a fast searching algorithm using binary searching and derived an equation formula to determine optimal primary retrieval which can minimize computation, and showed the result of the experiment on MPEG moving pictures. The result of the experiment shows that the searching speed of the suggested algorithm is maximum 13 times faster than the one of he sequential searching method.

  • PDF

Numerical Simulation on Phase Separation by Using the Lattice-Boltzmann Method (Lattice-Boltzmann Method를 이용한 기체-액체 상분리 시뮬레이션)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.197-201
    • /
    • 2009
  • As one of the promising model on the multiphase fluid mixtures, the Lattice-Boltzmann Method(LBM) is being developed to simulate flows containing two immisible components which are different mass values. The equilibrium function in the LBM can have a nonideal gas model for the equation of state and use the interfacial energy for the phase separation effect. An example on the phase separation has been carried out through the time evolution. The LBM based on the statistic mechanics is appropriate to solve very complicated flow problems and this model gives comparative merits rather than the continuum mechanics model.

  • PDF

Transmission Loss Estimation of Three Dimensional Silencers with Perforated Internal Structures Using Multi-domain BEM

  • Ju Hyeon-Don;Lee Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1568-1575
    • /
    • 2005
  • The calculation of the transmission loss of the silencers with complicated internal structures by the conventional BEM combined with the transfer matrix method is incorrect at best or impossible for 3-dimensional silencers due to its inherent plane wave assumption. On this consideration, we propose an efficient practical means to formulate algebraic overall condensed acoustic equations for the whole acoustic structure, where particle velocities on the domain interface boundaries are unknowns, and the solutions are used later to compute the overall transfer matrix elements, based on the multi-domain BEM data. The transmission loss estimation by the proposed method is tested by comparison with the experimental one on an air suction silencer with perforated internal structures installed in air compressors. The method shows its viability by presenting the reasonably consistent anticipation of the experimental result.