• Title/Summary/Keyword: One Equation Method

Search Result 1,552, Processing Time 0.037 seconds

Dynamic Modeling and Manipulability Analysis of Underwater Robotic Arms (수중로봇팔의 동역학 모델링과 동적 조작도 해석)

  • Jnn Bong-Huan;Lee Jihong;Lee Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.688-695
    • /
    • 2005
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The manipulability is a functionality of manipulator system in a given configuration under the limits of joint ability with respect to the task required to be performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method is presented. The dynamic equation of motion of underwater manipulator is derived based on the Lagrange-Euler equation considering with the hydrodynamic forces caused by added mass, buoyancy and hydraulic drag. The hydrodynamic drag term in the equation is established as analytical form using Denavit-Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based oil manipulability ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torques in joint space, while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid as much as gravity and velocity dependent forces in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

Thermal Flux Analysis for the Wearable NOx Gas Sensors (웨어러블 NOx 가스센서의 열유동 해석)

  • Jang, Kyung-uk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.793-799
    • /
    • 2019
  • In this study, the diffusion process and the thermal energy distribution gradient of the sensor were confirmed by using the finite element analysis program (COMSOL) of the mesh method to analyze the thermal diffusion in the wearable fabric (Nylon) + MWCNT gas sensor. To analyze the diffusion process of thermal energy, the structure of the gas sensor was modeled in a two dimension plane. The proposed modeling was presented with the characteristic value for the component of the sensor, and the gas sensor designed using the mesh finite element method (FEM) was proposed and analyzed by suggesting the one-way partial differential equation in the governing equation to know the degree of thermal energy diffusion and the thermal energy gradient. In addition, the temperature gradient 10[K/mm] of the anode-cathode electrode layer and the gas detection unit was investigated by suggesting the heat velocity transfer equation.

Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding

  • Choi, Gyeong-Ha;Shin, Chang-Hwan;Kim, Jae Yong;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2312-2322
    • /
    • 2021
  • In recent studies, the creep rate of Zircaloy-4, one of the basic property parameters of the nuclear fuel code, has been commonly used with the axial creep model proposed by Rosinger et al. However, in order to calculate the circumferential deformation of the fuel cladding, there is a limitation that a difference occurs depending on the anisotropic coefficients used in deriving the circumferential creep equation by using the axial creep equation. Therefore, in this study, the existing axial creep law and the derived circumferential creep results were analyzed through a circumferential creep test by the internal pressurization method in the isothermal conditions. The circumferential creep deformation was measured through the optical image analysis method, and the results of the experiment were investigated through constructed IDECA (In-situ DEformation Calculation Algorithm based on creep) code. First, preliminary tests were performed in the isotropic β-phase. Subsequently in the anisotropic α-phase, the correlations obtained from a series of circumferential creep tests were compared with the axial creep equation, and optimized anisotropic coefficients were proposed based on the performed circumferential creep results. Finally, the IDECA prediction results using optimized anisotropic coefficients based on creep tests were validated through tube burst tests in transient conditions.

Sequential prediction of TBM penetration rate using a gradient boosted regression tree during tunneling

  • Lee, Hang-Lo;Song, Ki-Il;Qi, Chongchong;Kim, Kyoung-Yul
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.523-533
    • /
    • 2022
  • Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.

A new base shear equation for reliability-based design of steel frames

  • Hakki Deniz Gul;Kivanc Taskin
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The reliability-based seismic design of steel frames is a complex process that incorporates seismic demand with a structural capacity to attain safe buildings aligned with specified constraints. This paper introduces an efficient base shear force formulation to support the reliability-based design process of steel frames. The introduced base shear force equation combines the seismic demand statistics with the reliability objective to calculate a fictitious base shear force for linear static analysis. By concentrating on the seismic demand and promising to meet a certain level of reliability, the equation converts the reliability-based seismic design problem to a deterministic one. Two code-compliant real-size steel moment frames are developed according to different reliability objectives to demonstrate the competency of the proposed formula. The nonlinear dynamic analysis method is used to assess the seismic reliability of the constructed frames, and the numerical results validate the credibility of the suggested formulation. The base shear force calculation method regarding seismic reliability is the main finding of this study. The ease of use makes this approach a potent tool for design professionals and stakeholders to make rapid risk-informed decisions regarding steel moment frame design.

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

1D contaminant transport using element free Galerkin method with irregular nodes

  • Rupali, S.;Sawant, Vishwas A.
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.203-221
    • /
    • 2016
  • The present study deals with the numerical modelling for the one dimensional contaminant transport through saturated homogeneous and stratified porous media using meshfree method. A numerical algorithm based on element free Galerkin method is developed. A one dimensional form of the advectivediffusive transport equation for homogeneous and stratified soil is considered for the analysis using irregular nodes. A Fortran program is developed to obtain numerical solution and the results are validated with the available results in the literature. A detailed parametric study is conducted to examine the effect of certain key parameters. Effect of change of dispersion, velocity, porosity, distribution coefficient and thickness of layer is studied on the concentration of the contaminant.

A recursive scheme for improvement of the lateral resolution in B-scan ultrasonography (회귀방법에 의한 초음파 진단기의 측면해상도 개선에 관한 연구)

  • 김선일;민병구;고명삼
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.204-208
    • /
    • 1982
  • The objective of this paper is to present a digital method for improving the lateral resolution of the B-scan images in the medical applications of ultrasound. The method is based upon a mathematical model of the lateral blurring caused by the finite beam width of the transducers. This model provides a simple method of applying a recursive scheme for image restoration with fast computation time. The point spread function (P.S.F.) can be measured by the reflective signals after scanning the small pins located along the depth of interest. From the measured P.S.F., one can compute the coefficient matrices of the inverse discrete-time dynamic state variable equation of the blurring process. Then, a recursive scheme for deblurring is applied to the recorded B-scan to improve the lateral resolution. One major advantage of the present recursive scheme over the transform method is in its applicability for the space-variant imaging, such as in the case of the rotational movement of transducer.

  • PDF

Determination of Stress Intensity Factor $K_I$ from Two Fringe Orders by Fringe Multiplication and Sharpening

  • Chen, Lei;Baek, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.550-555
    • /
    • 2007
  • Stress intensity factor is one of the most important parameters in fracture mechanics. Both the stress field distribution and the crack propagation are closely related to these parameters. Due to the complexity of actual engineering problems, it is difficult to calculate the stress intensity factor by theoretical formulation, so photoelasticity method is a good choice. In this paper, modified two parameter method is employed to calculate stress intensity factor for opening mode by using data from more than one photoelastic fringe loop. For getting accurate experiment results, the initial fringes are doubled and sharpened by digital image programs from the fringe patterns obtained by a CCD camera. Photoelastic results are compared with those obtained by the use of empirical equation and FEM. Good agreement shows that the methods utilized in experiments are considerably reliable. The photoelastic experiment can be used for bench mark in theoretical study and other experiments.

Active Structural Vibration Control using Forecasting Control Method (예측 제어기법을 이용한 기계 구주물의 능동 진동제어)

  • 황요하
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.293-304
    • /
    • 1992
  • Active vibration control is presented with simulation and experiment. Dynamic Data System(DDS) method is used for system modeling and this model is combined with an forecasting control technique to derive a control equation. In the experiment, on-line digital computer monitors structural vibration and calculates control input. The control input is sent to an electromagnetic actuator which cancels the structural vibration. Experiment is performed first with a simple beam setup to demonstrate the effetiveness of this method. This method is then applied to a color laser printer to actively modify the structure. The beam experiment showed vibration reduction of over 60% with one-and two-DOF models. In the printer structure experiment, the first mode of 308 Hz was successfully controlled with a one-DOF model.

  • PDF