• Title/Summary/Keyword: On-the-fly

Search Result 2,193, Processing Time 0.035 seconds

An Experimental Study on Strength Development of Micro Grinding Fly-ash Mortar - Effect of Alkali Activator and High Temperature Curing on the Compressive Strength of Concrete - (미분쇄한 플라이애시 모르타르의 강도증진 방안에 관한 연구 - 알칼리 자극제와 고온양생이 강도에 미치는 영향 -)

  • Cho, Hyun-Dae;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Fly ash has the advantages, among others, of improving the characteristics of concrete, reducing the price of concrete products, improving the durability, and reducing hydration heat. However, when added in mass, it leads to problems such as insufficient concrete intensity, increase of AE use, and others, resulting in a limitation of the use volume. Therefore, this study is undertaken to solve the problems associated with themass use of fly ash through the high concentration powder ($4000{\sim}8000cm^2/g$) of fly ash, curing method, the addition of an alkali stimulation agent and others for the purpose of increasing the added value of the fly ash. The research showed that the intensity manifestation has an outstanding status, with the hydrates reaching a very stable condition if the rate of addition of a stimulation agent is appropriately used with the heightening of the fineness of the fly ash in the temperature range of $40^{\circ}C$, and if the applicable study is continued, it is likely to result ineffective value generation on the massive replacement of fly ash.

An Experimental Study of Chloride Acceleration on the Seawater Resistance of Fly Ash Antiwashout Underwater Concrete (플라이애쉬 수중불분리성 콘크리트의 내해수성에 관한 염화물 촉진 시험)

  • Kwon, Jung-Hyun;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.29-34
    • /
    • 2005
  • This paper describes the effect of fly ash replacement on seawater resistance of anti-washout underwater concrete, which was replaced cement by fly ash from $0\%$ to $50\%$. The experimental work was performed to find out the variations of length and weight of specimens, using a chloride acceleration test in $40\^{\circ}$C The results shaw that the admixture using fly ash on an anti-washcout underwater concrete in the sea environment makes it more durable for the attacks of chloride by seawater. Also, the length of specimens of anti-washout underwater concrete, at age 180 days, increased substantially, compared with normal concrete; however, the mixture in which cement was replaced $50\%$ of fly ash shows $93\%$ reduction of the expansion, compared with the normal anti "washout underwater concrete specimen.

An Experimental Study on the Sulfate Resistance of Fly Ash Antiwashout Underwater Concrete (플라이애시를 혼입한 수중불분리성 콘크리트의 내 황산염에 관한 실험적 연구)

  • Kwon, Joong-Hyen;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.40-46
    • /
    • 2011
  • This paper describes the effects of fly ash replacement on the sulfate resistance of antiwashout underwater concrete which was replaced cement by fly ash from 0% to 50%. and the experimental works were performed on sulfate acceleration test of 5%$Na_2SO_4$ solution to find out the variance of length and weight of specimens. The experimental result shows that the length of specimens of antiwashout underwater concrete age at 180day was highly increased compare with normal concrete by acceleration test. but the mixture which was replaced 50% of fly ash shows reduction of the expansion, weight various, compare with normal concrete specimen. accordingly by using fly ash as admixture in antiwashout underwater concrete in sea environment, it will makes more durable for the attacks of sulfate by sea water.

Effect of Additives on the Compressive Strength of Geopolymerized Fly Ash (각종 첨가제가 지오폴리머 반응된 석탄회의 압축강도에 미치는 영향)

  • Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.494-498
    • /
    • 2012
  • Geopolymer cements and geopolymer resins are newly advanced mineral binders that are used in order to reduce the carbon dioxide generation that accompanies cement production. The effect of additives on the compressive strength of geopolymerized class-F fly ash was investigated. Blast furnace slag, calcium hydroxide($Ca(OH)_2$), and silica fume powders were added to fly ash. A geopolymeric reaction was initiated by adding a solution of water glass and sodium hydroxide(NaOH) to the powder mixtures. The compressive strength of pure fly ash cured at room temperature for 28 days was found to be as low as 291 $kgf/cm^{-2}$, which was not a suitable value for use in engineering materials. On the contrary, addition of 20 wt% and 40 wt% of blast furnace slag powders to fly ash increased the compressive strength to 458 $kgf/cm^{-2}$ and 750 $kgf/cm^{-2}$, respectively. 5 wt% addition of $Ca(OH)_2$ increased the compressive strength up to 640 $kgf/cm^{-2}$; further addition of $Ca(OH)_2$ further increased the compressive strength. When 2 wt% of silica fume was added, the compressive strength increased to 577 $kgf/cm^{-2}$; the maximum strength was obtained at 6 wt% addition of silica fume. It was confirmed that the addition of CaO and $SiO_2$ to the fly ash powders was effective at increasing the compressive strength of geopolymerized fly ash.

Bond Behavior of Concrete According to Replacement Ratio of Fly Ash and Compressive Strength of Concrete (플라이애시 치환율 및 압축강도에 따른 콘크리트의 부착 거동)

  • Lee, Hyung-Jib;Suh, Jeong-In;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Several researches on high volume fly ash concrete have been conducted to investigate its fundamental material properties such as slump, strength and durability and however, research on the structural behavior of bond strength is essential for the application of this high volume fly ash concrete to structural members because of the necessity of reinforcement. But the exact design code for application and researches on the bond behavior of high volume fly ash concrete lack yet. To achieve such a goal, this paper evaluates experimentally the bond behavior of high volume fly ash concretes by direct pull-out test and compares between the current test results and existing research results. By the test results, it is shown that the bond behavior of high volume fly ash concrete is similar to that of general concrete. And by the comparison between test and existing research, it is shown that bond stress of high volume fly ash concrete is underestimated, as the embedment length gets longer.

The 2nd Excitation Control System of Wound-Rotor Induction Motor with Fly-wheel (Fly-wheel을 갖는 권선형 유도전동기의 2차 여자제어시스템)

  • 오성업;김민태;신기택;최태식;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.535-539
    • /
    • 1999
  • This paper presents the 2nd excitation control of the wound-rotor induction motor with Fly-wheel. In the wound-rotor induction motor, the primary power is controlled by AC excitation which used the secondary power conversion. Based on theory, this paper describes the dynamic response analysis of the wound-rotor induction motor with Fly-wheel and Simulation using MATLAB is performed to verify the proposed control method.

  • PDF

The Power Compensation by Wound-Rotor Induction Motor with a Fly-wheel (Fly-wheel을 갖는 권선형 유도전동기에 의한 전력보상)

  • 이동우
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.34-37
    • /
    • 2000
  • This paper presents the power compensation by wound-rotor induction motor with a Fly-wheel. In the wound-rotor induction motor the primary power is controlled by AC excitation which used the secondary power conversion. Based on theory this paper describes the dynamic response analysis of the would-rotor induction motor with Fly-wheel. Simulation and experimental results are performed to verify the proposed control method

  • PDF

The Effects of Fly-ash Replacement on the Properties of Undispersed Underwater Concrete (플라이애시 치환율 변화에 따른 수중불분리 콘크리트의 특성에 관한 연구)

  • 원종필;최응규;이대주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.387-393
    • /
    • 1996
  • The purpose of this study is analyze the properties of undispersed concrete according to replacement of the ratio of fly-ash. The test results show that as the ratio of flyash replacement which increasing fluidity but the amounts of air content, suspended solid and pH values dicreased and setting time is delayed. The ten persent replacment of fly-ash has less water pollution and high compressive strength value than other ratio of fly-ash replacement.

  • PDF

An Experimental Study on the Mechanical Properties of High Sulphated Cement Concrete with Fly-Ash (고황산염시멘트와 플라이애쉬를 사용한 고강도콘크리트의 역학적 특성에 관한 실험적 연구)

  • 박승범;임창덕;최수홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.175-180
    • /
    • 1994
  • The purpose of this experimental study is to improve the workability and durability in high sulphated cement concrete with fly-ash. As a results, we can make high strength concrete by using only high sulphated cement but try to improve the workability and degree of strength by adding 10% fly-ash but the effect beyond my expectation to improve the workability and degree of strength does not show, and the improvable effect except the drying shrinkage of durability dose not show, either. So we must give attention to using fly-ash.

  • PDF

FLY-BY ENCOUNTERS BETWEEN DARK MATTER HALOS IN COSMOLOGICAL SIMULATIONS

  • AN, SUNG-HO;KIM, JEONGHWAN H.;YUN, KIYUN;KIM, JUHAN;YOON, SUK-JIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.331-333
    • /
    • 2015
  • Gravitational interactions - mergers and fly-by encounters - between galaxies play a key role as the drivers of their evolution. Here we perform a cosmological N-body simulation using the tree-particle-mesh code GOTPM, and attempt to separate out the effects of mergers and fly-bys between dark matter halos. Once close pair halos are identified by the halo finding algorithm PSB, they are classified into mergers ($E_{12}$ < 0) and fly-by encounters ($E_{12}$ > 0) based on the total energy ($E_{12}$) between two halos. The fly-by and merger fractions as functions of redshift, halo masses, and ambient environments are calculated and the result shows the following.(1) Among Milky-way sized halos ($0.33-2.0{\times}10^{12}h^{-1}M{\odot}$), $5.37{\pm}0.03%$ have experienced major fly-bys and $7.98{\pm}0.04%$ have undergone major mergers since z ~ 1; (2) Among dwarf halos ($0.1-0.33{\times}10^{12}h^{-1}M{\odot}$), $6.42{\pm}0.02%$ went through major fly-bys and $9.51{\pm}0.03%$ experienced major mergers since z ~ 1; (3) Milky-way sized halos in the cluster environment experienced fly-bys (mergers) 4-11(1.5-1.7) times more frequently than those in the field since z ~ 1; and (4) Approaching z = 0, the fly-by fraction decreases sharply with the merger fraction remaining constant, implying that the empirical pair/merger fractions (that decrease from z ~ 1) are in fact driven by the fly-bys, not by the mergers themselves.