• 제목/요약/키워드: On-road driving

검색결과 1,060건 처리시간 0.026초

차량시뮬레이터 및 아이카메라를 이용한 도로안전성 평가기법 개발 (Development of Road Safety Estimation Method using Driving Simulator and Eye Camera)

  • 도철웅;김원근
    • 한국도로학회논문집
    • /
    • 제7권4호
    • /
    • pp.185-202
    • /
    • 2005
  • 본 연구에서는 현장 실험 조성의 제약을 극복하기 위해 3차원 가상현실(virtual reality)로 설계중인 도로를 모델링한 후, 피실험자가 Eye camera가 장착된 차량 시뮬레이터 (driving simulator)에 탑승하고 주행하면서 운전자가 행하는 선형변화에 대한 동적 반응 및 운전자의 시각행태에 대한 데이터를 획득하였다 본 실험에 적용된 차량시뮬레이터의 그래픽 모듈은 동역학 해석 모듈에 의해 얻어진 데이터를 기초로 하여 운동재현기와 가상환경의 일치감들 최대로 함으로써 피실험자로 하여금 차량시뮬레이터의 비현실성 및 부작용을 최소화하도록 하였다. 또한, Eye camera는 기존의 여타 장비와는 달리 운전자가 헬멧이나 렌즈 등 어떠한 부착장치도 착용하지 않고 실험할 수 있는 FaceLAB을 사용함으로써 운전자의 자연스러운 시각행태를 아무런 데이터 손실없이 획득하였다. 본 연구에서는 조사된 데이터를 바탕으로 도로 안전성을 평가하기 위해 차량 시뮬레이터, Eye camera방법을 통해 설계시 도로 기하구조 변화에 따라 운전자가 느끼는 안전성의 변화를 파악함으로써 도로 기하구조 조건과 안전성의 상관성을 명확하게 규명하고 이를 통해 운전자가 도로 주행시 편안하고 쾌적한 주행을 보장받을 수 있는 도로를 설계 단계에서부터 평가할 수 있는 방법을 제시하려고 한다.

  • PDF

도심환경에서의 전기자동차 친환경 자율주행 속도제어 전략 (Eco-Speed Control Strategy for Automated Electric Vehicles on Urban Road)

  • 허슬기;정용환;이경수
    • 자동차안전학회지
    • /
    • 제10권1호
    • /
    • pp.32-37
    • /
    • 2018
  • This paper proposes autonomous speed control strategy for an Electric Vehicle on urban road. SNU campus road is used to reperesent urban road situation. Motor efficiency of driving on campus circulation road can be improved by controlling velocity properly. Given information of campus road, especially slope of road, acceleration is selected from candidate, considering consumed power, human factor and driving time. To apply urban situation, preceding vehicle is also considered. With preceding vehicle, acceleration is defined according to clearance and relative velocity. Acceleration is bounded in normal range. Proposed acceleration control method is activated with proper velocity range for campus circulation road. With acceleration control, motor efficiency becomes better than driving with constant vehicle. To evaluate the performance of proposed acceleration controller, simulation study is conducted via MATLAB.

A study on road damage detection for safe driving of autonomous vehicles based on OpenCV and CNN

  • Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권2호
    • /
    • pp.47-54
    • /
    • 2022
  • For safe driving of autonomous vehicles, road damage detection is very important to lower the potential risk. In order to ensure safety while an autonomous vehicle is driving on the road, technology that can cope with various obstacles is required. Among them, technology that recognizes static obstacles such as poor road conditions as well as dynamic obstacles that may be encountered while driving, such as crosswalks, manholes, hollows, and speed bumps, is a priority. In this paper, we propose a method to extract similarity of images and find damaged road images using OpenCV image processing and CNN algorithm. To implement this, we trained a CNN model using 280 training datasheets and 70 test datasheets out of 350 image data. As a result of training, the object recognition processing speed and recognition speed of 100 images were tested, and the average processing speed was 45.9 ms, the average recognition speed was 66.78 ms, and the average object accuracy was 92%. In the future, it is expected that the driving safety of autonomous vehicles will be improved by using technology that detects road obstacles encountered while driving.

주행모드에 따른 전기이륜차의 1회충전주행거리 시험방법에 관한 연구 (Per-Charge Range-Testing Method for Two-Wheeled Electric Vehicles)

  • 길범수;김강출
    • 대한기계학회논문집A
    • /
    • 제38권1호
    • /
    • pp.37-44
    • /
    • 2014
  • 본 연구에서는 전기이륜차의 1회충전주행거리를 알아보기 위해 도로 주행시험과 차대동력계(Chassis Dynamometer) 주행시험을 하였다. 도로주행시험은 대전시(Daejeon Metropolitan City)의 도로 중 대표적인 3가지 루트에서 주행시험을 하였다. 차대동력계를 이용한 CVS-40모드 주행시험의 경우 도로 부하조건을 다양하게 설정하여 CVS-40 모드주행을 실시하였다. 본 연구를 통하여 도로에서의 전기이륜차의 1회 충전주행거리(Per-Charge Range Testing)를 확인하고, 차대동력계 도로부하 설정방법에 따른 주행거리 및 에너지소비효율을 측정하였다. 이를 통해 실도로 주행시험과 차대동력계 주행시험을 비교하여, 차대동력계 실험에서도 전기이륜차 1회충전주행거리시험이 실도로에서의 주행조건과 근접한 결과를 갖는 도로부하 설정에 대해 연구하였다.

A Study on Prediction of Traffic Volume Using Road Management Big Data

  • Sung, Hongki;Chong, Kyusoo
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.589-594
    • /
    • 2015
  • In reflection of road expansion and increasing use rates, interest has blossomed in predicting driving environment. In addition, a gigantic scale of big data is applied to almost every area around the world. Recently, technology development is being promoted in the area of road traffic particularly for traffic information service and analysis system in utilization of big data. This study examines actual cases of road management systems and road information analysis technologies, home and abroad. Based on the result, the limitations of existing technologies and road management systems are analyzed. In this study, a development direction and expected effort of the prediction of road information are presented. This study also examines regression analysis about relationship between guide name and traffic volume. According to the development of driving environment prediction platform, it will be possible to serve more reliable road information and also it will make safe and smart road infrastructures.

도로표지의 지명 판독 성패에 영향을 미치는 인자 분석 (The Obstructing Factors for Safe Driving on Road Signs)

  • 이종학;노관섭
    • 대한교통학회지
    • /
    • 제26권5호
    • /
    • pp.195-204
    • /
    • 2008
  • 운전자가 도로를 주행하면서 안내표지판을 인지하고 원하는 목적지로 잘 도착할 수 있도록 하기 위해서는 인적요소, 표지판의 요소, 기하구조 등 여러 가지 원인이 잘 조화되어 운전자를 이끌어야 한다. 본 연구의 목적은 운전자가 표지판을 정확하게 인지하고 다음 목적지로 갔는지를 알아보기 위해서 성공여부(성공0, 실패1)의 개념을 사용하여 도로표지의 지명 판독과정에서 영향을 미치는 인자를 규명하는 것이다. 운전자의 인적요소, 표지판 요소 등을 고려하였으며, 도로주행시뮬레이터(driving simulator)를 이용하여 도로표지의 지명 판독과정에서 안전운행에 영향을 미치는 인자에 대한 통계 분석을 실시하였다. 통계적 분석은 선정된 변수를 토대로 Logistic Model을 이용하여 성공여부에 대한 확률식을 제시하였다. 본 연구의 결과는 도로표지 설계 및 설치에 있어서 도로 이용자에게 보다 좋은 시설이 될 수 있도록 하는데 기초자료로 활용될 수 있을 것이다.

미시적 도로주행 조건을 반영한 배출량 산정 방법의 적용 사례 연구 (Application of an Emission Estimation Methodology to Reflect Microscale Road Driving Conditions)

  • 허혜정;윤천주;양충헌;김진국
    • 한국도로학회논문집
    • /
    • 제18권3호
    • /
    • pp.115-125
    • /
    • 2016
  • PURPOSES : This study proposes a methodology to collect data necessary for microlevel emission estimation, such as second-by-second speeds and road grades, and to accordingly estimate emissions. METHODS : To ease data collection for microlevel emission estimation, a vehicle equipped with speed- and location-recording instruments as well as equipment for measuring road geometry was used. As a case study, this vehicle and the proposed methodology were used on a 10-km-long highway in Yongin City, Korea. Emissions from the vehicle during driving were estimated in various microscale driving conditions. RESULTS : Differences in the estimated emission under different microscale driving conditions cannot be ignored. Compared with the estimations obtained when second-by-second data were not considered, CO and NOx emissions were more than threefold higher when considering second-by-second speed; similarly, CO and NOx emission estimations were higher by approximately 10% and 3%, respectively, when considering second-by-second road grade. CONCLUSIONS : The proposed method can estimate vehicle emissions under real-world driving conditions in such applications as road design and traffic policy assessments.

EXPERIMENTAL ANALYSIS OF DRIVING PATTERNS AND FUEL ECONOMY FOR PASSENGER CARS IN SEOUL

  • Sa, J.-S.;Chung, N.-H.;Sunwoo, M.-H.
    • International Journal of Automotive Technology
    • /
    • 제4권2호
    • /
    • pp.101-108
    • /
    • 2003
  • There are a lot of factors that influence automotive fuel economy such as average trip time per kilometer, average trip speed, the number of times of vehicle stationary, and so forth. These factors depend on road conditions and traffic environment. In this study, various driving data were measured and recorded during road tests in Seoul. The accumulated road test mileage is around 1,300 kilometers. The objective of the study is to identify the driving patterns of the Seoul metropolitan area and to analyze the fuel economy based on these driving patterns. The driving data which was acquired through road tests was analysed statistically in order to obtain the driving characteristics via modal analysis, speed analysis, and speed-acceleration analysis. Moreover, the driving data was analyzed by multivariate statistical techniques including correlation analysis, principal component analysis, and multiple linear regression analysis in order to obtain the relationships between influencing factors on fuel economy. The analyzed results show that the average speed is around 29.2 km/h, and the average fuel economy is 10.23 km/L. The vehicle speed of the Seoul metropolitan area is slower, and the stop-and-go operation is more frequent than FTP-75 test mode which is used for emission and fuel economy tests. The average trip time per kilometer is one of the most important factors in fuel consumption, and the increase of the average speed is desirable for reducing emissions and fuel consumption.

곡선반경과 노면상태에 따른 곡선구간 안전주행 행태분석 (A Study on the Analysis of Safe Driving Behavior on Curve Section by Curve Radius and Road Surface Condition)

  • 김근혁;임준범;이수범;김주희;김선미
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.211-218
    • /
    • 2012
  • Two experiment are planed to identify driver's safe driving behaviour by curve radius, road surface condition in curve section. At four-lane and two-lane road, conducted experiments are check on driver's feeling of safety that 30 subjects do not feel discomfort. And using the data from these experiments, this study compare physical speed (not slipping, fall our of the road) with safety driving speed(drivers felt a comfortable and safe speed) each curve radius and fiver road surface condition(drying, wet, rain, snow and ice). As a result, safe driving behaviour factors that are derived to curve radius of 100m units, five road surface conditions enable to represent quantitative analysis of driver's discomfort. This study will develop road design method and evaluation reflected ergonomic aspects.

도로안전성 분석을 위한 도로주행 시뮬레이터 개발 및 응용 (A Development and Application of Driving Simulator for Road Safety Analysis)

  • 김종민;노관섭
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.138-143
    • /
    • 2005
  • In order to reduce traffic accident, the interaction between drivers and roads should be studied in drivers' behaviour standpoints, and then this must be applied to the establishment of the road design standard. The K-ROADS(KICT-Road Analysis Driving Simulator) was developed to analyze and evaluate the road safety at the project HuRoSAS(Human & Road Safety Analysis System), since 2003. This has two distinct functions. One is the visual system which has 360 degree F.O.V. to reduce a dead angle on black spots as at-grade intersection. The other is the motion system which reproduce high frequency vibration made in irregular road surface and vehicle's motion. The K-ROADS has been used the study on the effect of alternatives of speed hump, and the study on the interior wall design of long tunnel to safety standpoints.

  • PDF