• Title/Summary/Keyword: On-off cycle

Search Result 371, Processing Time 0.03 seconds

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle Using Dual-zone Reactor and CeO2/ZrO2 Foam Device (Dual-zone reactor와 CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.27-37
    • /
    • 2017
  • In this study, an artificial solar simulator composed of a 2.5 kW Xe-Arc lamp and mirror reflector was used to carry out the solar thermal two step thermochemical water decomposition cycle which can produce high efficiency continuous hydrogen production. Through various operating conditions, the change of hydrogen production due to the possibility of a dual-zone reactor and heat recovery were experimentally analyzed. Based on the reaction temperature of Thermal-Reduction step and Water-Decomposition step at $1,400^{\circ}C$ and $1,000^{\circ}C$ respectively, the hydrogen production decreased by 23.2% under the power off condition, and as a result of experiments using heat recovery technology, the hydrogen production increased by 33.8%. Therefore, when a thermochemical two-step water decomposition cycle is conducted using a dual-zone reactor with heat recovery, it is expected that the cycle can be operated twice over a certain period of time and the hydrogen production amount is increased by at least 53.5% compared to a single reactor.

A study on the improvement of communiation circuit for DC chopper (DC chopper용 전류회로 개선에 관한 연구)

  • 노창주;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.57-68
    • /
    • 1989
  • This paper treats the analytical and experimental studies on the improvement of commutating circuit for the speed control of DC motor. A simple circuit composed of R, L and C elements is proposed here for switching off power SCR carrying the load current. The real important in this chopper circuit is to determine the reasonable values of commutating circuit constants. In this paper, the reasonable values of the commutating circuit constants are basically determined on a view point of commutating performances in the given circuit model and must satisfy the following conditions. The first, the peak commutating current should be larger than the anticipated maximum load current. The second, the circuit turn-off time (tc) must be longer than the SCR turn-off time (tq). The third, the resistor should be enough large to permit the current to be neglected in the analysis of the commutation circuit, as well as be enough small to permit to charge the capacity voltage (Ec) to the half the value of source voltage (E) before the next communication cycle is initiated. The last, the period of chopping signal must be the least possible multiple of the damping vibration period of commutating circuit. The improved chopper circuit used in the experiment under unloaded condition was composed to meet the reasonable conditions mentioned above, and a successful commuting performance was achieved without failure. Several types of microprocessor having a different value of CPU speed individually have been applied to the experiment under the loaded conditions. Also it shows that the faster the speed of CPU is, the more stable the commutation turns out.

  • PDF

A Method for Reducing the Effect of Disk Radial Runout for a High-Speed Optical Disk Drive (고속 광 디스크 드라이브를 위한 디스크의 편심 보상 방법)

  • Ryoo Jung Rae;Moon Jung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • Disk radial runout creates a periodic relative motion between the laser beam spot and tracks formed on an optical disk. While only focus control is activated, the periodic relative motion yields sinusoid-like waves in the tracking error signal, where one cycle of the sinusoid-like waves corresponds to one track. The frequency of the sinusoid-like waves varies depending on the disk rotational speed and the amount of the disk radial runout. If the frequency of the tracking error signal in the off-track state is too high due to large radial runout of the disk, it is not a simple matter to begin track-following control stably. It might take a long time to reach a steady state or tracking control might fail to reach a stable steady state in the worst case. This article proposes a simple method for reducing the relative motion caused by the disk radial runout in the off-track state. The relative motion in the off-track state is effectively reduced by a drive input obtained through measurements of the tracking error signal and simple calculations based on the measurements, which helps reduce the transient response time of the track-following control. The validity of the proposed method is verified through an experiment using an optical disk drive.

A Study on the Limit of Dynamic Rrange Improvement of Complementary Con-elation OTDR Caused by the Increased Measurement Cycle at Long Code Length (Complementary Correlation OTDR에서의 긴 코드 길이에 따른 측정시간 증가에 의한 Dynamic Range 증가 제한에 대한 연구)

  • 김동선;박재홍
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.19-28
    • /
    • 2003
  • The limitation on the dynamic range improvement of the complementary correlation optical time domain reflectometer(CCOTDR) is presented. In CCOTDR, the improvement of dynamic range is function of both the averaging number of measurement cycles and the length of codes. The trade off between the averaging number and the code length restricts the improvement of the dynamic range and a very long code is not effective to improve the dynamic range. In this paper, the improvement limitation on dynamic range caused by the trade off between the averaging number and the code length is presented. For derivation of the trade off, the number of one measurement cycles employing a conventional single pulse method and employing a complementary code method are presented and compared. And the effective maximum code length is presented in addition.

Countermeasures for Management of Off-site Radioactive Wastes in the Event of a Major Accident at Nuclear Power Plants

  • Lee, Ji-Min;Hong, Dae Seok;Shin, Hyeong Ki;Kim, Hyun Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.339-347
    • /
    • 2022
  • Major accidents at nuclear power plants generate huge amounts of radioactive waste in a short period of time over a wide area outside the plant boundary. Therefore, extraordinary efforts are required for safe management of the waste. A well-established remediation plan including radioactive waste management that is prepared in advance will minimize the impact on the public and environment. In Korea, however, only limited plans exist to systematically manage this type of off-site radioactive waste generating event. In this study, we developed basic strategies for off-site radioactive waste management based on recommendations from the IAEA (International Atomic Energy Agency) and NCRP (National Council on Radiation Protection and Measurements), experiences from the Fukushima Daiichi accident in Japan, and a review of the national radioactive waste management system in Korea. These strategies included the assignment of roles and responsibilities, development of management methodologies, securement of storage capacities, preparation for the use of existing infrastructure, assurance of information transparency, and establishment of cooperative measures with international organizations.

Effect of Circulation Cycle of Nutrient Solution on the Dissolved Oxygen Concentration, and the Growth and Phytonutrient Contents of Leafy Vegetables Grown in DFT Systems (양액의 순환주기가 담액수경 엽채류의 용존산소 농도, 생육 및 식물영양소의 함량에 미치는 영향)

  • Seo, Tae-Cheol;Rhee, Han-Cheol;Rho, Mi-Young;Choi, Kyeong-Lee;Yun, Hyung-Kwon;Chun, Chang-Hoo
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.112-118
    • /
    • 2009
  • To determine the effects of circulation frequency of nutrient solution, three frequencies of 10min. on/10min. off; 10min. on/110min. off; and 10min. on/1,430min. off. treatments were applied to leafy vegetable production using deep flow technique (DFT) systems and their growth and phytonutrient content were investigated. In the 10min. on/I,430min. off treatment, dissolved oxygen concentration (DOC) 17 days after treatment decreased to 2.8mg. $L^{-1}$, known to be a low DOC that causes hypoxia, and thereafter decreased to 1.5mg. $L^{-1}$ 20 days after treatment. Fresh weight of 7 leafy vegetables in the 10min. on/1,430min. off treatment was lower by 0${\sim}$24% than those in the 10min. on/110min. off treatment, and those in the 10min. on/10min. off was higher by -2${\sim}$34% than those in the 10min. on/110min. off treatment as control. As the more frequent circulation was applied, the higher phosphorous content and the lower carbon to nitrogen ratio (C/N ratio) and total ascorbic acid contents were resulted. Results indicate that the circulation frequency of 110min, on/110min. off could be recommended for the production of the tested leafy vegetables in DFT systems.

A Study on Novel Step-Up AC-DC Chopper of High Efficiency by using Lossless Snubber Capacitor (새로운 무손실 스너버 커패시터를 이용한 고효율 스텝 업 AC-DC 초퍼에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1103-1104
    • /
    • 2008
  • In this paper, authors propose a novel step-up AC-DC chopper operated with power factor correction (PFC) and with high efficiency. The proposed chopper behaves with discontinuous current control (DCC) of input current. The input current waveform in the proposed chopper is got to be a discontinuous sinusoid form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control method is simple. In the general DCC chopper, the switching devices are turned-on with the zero current switching, but turn-off of the switching devices is switched at current maximum value. To achieve a soft switching of the switching turn-off, the proposed chopper is used a new partial resonant circuit. The result is that the switching loss is very low and the efficiency of chopper is high.

  • PDF

Changes in Performance and Operating Condition of a Gas Turbine Combined Heat and Power System by Steam Injection - A Focus on Compressor Operation (증기분사에 의한 가스터빈 열병합발전 시스템의 성능과 운전조건 변화 - 압축기 작동 변화를 중심으로)

  • Kang, Soo-Young;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.68-75
    • /
    • 2011
  • This study simulated the effect of steam injection on the performance and operation of a gas turbine combined heat and power (CHP) system. A commercial simple cycle gas turbine was analyzed. A full off-design analysis was carried out to investigate the variations in not only engine performance but also the operating characteristics of the compressor caused by steam injection. Variation in engine performance and operation characteristics according to various operation modes were examined. First, the impact of full steam injection was investigated. Then, operations aiming to guarantee a minimum compressor surge margin, such as under-firing and partial steam injection, were investigated. The former and latter were turned out to be relatively superior to each other in terms of power and efficiency, respectively.

An Analysis of the Characteristics of Environmental Impact for PSC Beam Bridges using Life Cycle Assessment (LCA 기반 PSC 교량의 환경부하 특성분석에 대한 연구)

  • Cho, Namho;Yun, Won Gun;Lee, Wan Ryul;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.297-305
    • /
    • 2016
  • This study aims to analyze characteristics of environmental load for the construction phase of PSC beam bridge based on Life Cycle Assessment. For detail computation of environmental load, the construction materials and energy consumption are derived from the BOQ, also connecting with environmental load by Korea LCI Database Information Network. The characteristic of environmental impact was analyzed by 25 cases and cut-off ratio was 80% to 94%. The result sorted by construction materials revealed that environmental load were 53.3% for ready-mixed concrete, 9.6% for wire rod, 7.8% for rebar, 6.8% for cement, 5.5% for plywood, and 5.2% for energy. Furthermore, the result of environmental impact revealed that 45.5% for global warming, 30.4% for abiotic resources depletion, 10.5% for human toxicity, and 8.9% for photochemical oxidant creation. In the future, we can make a decision considering environmental load based on LCA at design phase.

Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant

  • Joo, Yong-Jin;Kim, Mi-Yeong;Park, Se-Ik;Seo, Dong-Kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.415-419
    • /
    • 2016
  • As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.