• Title/Summary/Keyword: On-machine form measurement

Search Result 57, Processing Time 0.03 seconds

The Study of the Fabrication of the Ultra-Precision Cylinder by the Compensation Process (보정 가공을 통한 초정밀 원통 가공에 대한 연구)

  • Lee, Jung-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.122-128
    • /
    • 2013
  • This paper describes the on-machine surface form evaluation of an ultra-precision cylinder for the fabrication by the compensation process. In this study, the surface form error of an ultra-precision cylinder, which was fabricated by the ultra-precision diamond turning machine with a single diamond cutting tool, was evaluated by using two capacitance-type displacement probes. Based on the measurement results, the compensation process was conducted. Since the measurement was carried out on the machine without re-mounting of the workpiece, additional fabrication for compensation process can be conducted precisely.

A study on evaluation of roundness characteristics about precise machined parts (정밀가공 부품의 진원도 특성 평가에 관한 연구)

  • Oh SangLok;Lee Gab-jo;Kim Jong-Kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.209-215
    • /
    • 2005
  • The dimensions and forms of precise machined parts are different to kinds of machine. It will be variant according to machine wear, tool form, cutting method and cutting condition at the same machine. At that time, the most important things are controlled and measured by appropriate measuring instruments. This paper aims to contribute to improving measurement accuracy through evaluation and consideration about various roundness in the machining company.

  • PDF

A Study on the optical aspects of machine vision based dimensional measurement system (정밀 좌표측정용 머신비전 시스템의 광학적 해석에 관한 연구)

  • Lee, E.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.149-163
    • /
    • 1994
  • A novel method of dimensional measurement using machine vision, which is called Landmark Tracking System, has been developed. Its advantages come form tracking only the bright, standard shaped "landmarks" which are made from retroreflective sheets. In the design of the LTS, it is essential to know the relationship between optical parameters and their influence on system performance. Such optical parameters include the brightness of landmark image, the illumination system design, and the choice of imaging optics. And the performance of retroreflective material also plays important role in the LTS performances. Influences of such optical parameters on LTS's dimensional measurement characteristics are investigated, with respect to the retroreflective material, the imaging optics, and the illumination system. Measuremtn errors due to parameter variations are also analyzed. Experiments are performed with a LTS prototype. Retroreflective characteristics are verified, and the LTS's measurement performances are measured in the form of repeatability and accuracy. Experimental results shgow that the LTS has repeatability better than 1/30,000 of a field of view(30 degrees), and accuracy better tha 1/3,000 of a field fo view.d fo view.

  • PDF

A Study on Improvement of Finishing Accuracy Using 3-Axis Machine for Curved Surface Dies (3축 가공기를 이용한 곡면 금형의 연마 정밀도 향상에 관한 연구)

  • Lim, Dong-Jae;Lee, Sang-Jik;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • The finishing process for die is an important process because it has influence on final quality of products. Recently s study on development of 5-axis die automated finishing machine has been progressed. But die must be moved from the cutting machine to the die automated finishing machine. So manufacturing cost and time increase and machining error occurs by transfer. So, in this study, a 3-axis machining center was applied to die finishing. Because cutting tool can be changed to finishing tool by ATC, both of cutting and finishing process are possible on the machine. However, this application results in the decrease of finishing for the improvement of form accuracy. So this study focused on the generation of finishing tool path suitable to 3-axis die finishing for the improvement of form accuracy. The form accuracy evaluation is performed by the measurement of removal depth using a stylus profilometer. From the result, it is confirmed that form accuracy was improved less than 2$\mu$m of removal depth error.

  • PDF

Development of Computer Control Polishing System for Free Form Surface (자유곡면 연마를 위한 자동 연마 시스템 개발)

  • 전문식;오창진;이응석;김옥현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.327-331
    • /
    • 2001
  • In the process of optical parts machining, polishing has been applied. Traditional polishing process is suitable for spherical optical parts. But it is very difficult to apply traditional process for aspheric optical parts. Nowadays, as growing needs for aspherical optic parts, many researches have been conducted. In this study, we developed computer controlled polishing system which consists of three major parts of active pressure control for correcting polishing process, mechanical on-machine measurement for rough polishing, and optical on-machine measurement for finish polishing, respectively. In this paper, a systematic stretegy for correcting polishing process, pressure control scheme for polishing tool, and on-machine measurement methods for automated and precise polishing are suggested. The information about developed machine is also included.

  • PDF

A Study on the measurement of Table Deflection using Laser Interferometer and It's Inspection using FEA (레이저 간섭계에 의한 테이블의 처짐측정과 FEA에 의한 이의 검증)

  • 이승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.204-209
    • /
    • 1998
  • The acceleration of the performance of machine tools influences the development of the semi-conductor and optical technology as the development of NC and measurement technology. We can mention that a traction role of the acceleration for the development like that depends on the development of the measurement technics Stylus instrument method, STM, SEM, Laser interferometer method which are used for measuring the quasi-static error of machine tools. Because the measurement has been done to unload condition without considering of mechanical stiffness in the case of machining center as we measure the quasi-static error of machine tools on general studies, people who works on the spot has many problems on the data value. Therefor we will help working more accurately on the spot by measuring, analyzing, displaying the deflection of the table and support shaft when we load on the table and the support shaft of machining center using laser interferometer. Also we try to settle new conception of the measurement method and more accurate grasp of the deflection tendency by verifing the tendency of the error measured through the comparison of the simulated error using ANSYS, a common finite element analysis program, which is able to measure heat deformation, material deformation, and error resulted form this study.

  • PDF

A Study of Feature-Based Computer-Aided Inspection Planning System (특징 형상기반의 CAIP에 관한 연구)

  • 윤길상;조명우;이홍희
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.15-23
    • /
    • 2003
  • A feature-based inspection planning system is proposed in this research to develop more efficient measuring methodology for the OMM(On-Machine Measurement) or CMM(coordinate Measuring Machine) for complicated workpiece having many primitive form features. This paper is proposed solution that optimum inspection sequence of the objective features. The sequences are determined by analyzing the feature information such as the nearest relationship and the possible probe-approach direction(PAD) of the features, and forming feature groups. A series of heuristic rules are developed to accomplish it. Also, each feature is decomposed into its constituent geometric elements for inspection process, and then the number of sampling points, location of the measuring points, optimum probing path are determined.

The Performance Improvement of the Aspheric Form Accuracy by Compensation Machining Program (보정 가공 프로그램을 활용한 비구면 형상정밀도 향상에 관한 연구)

  • Park, Yo-Chang;Yang, Sun-Choel;Kim, Geon-Hee;Lee, Young-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.10-15
    • /
    • 2005
  • For the development of compensation machining program, ultra precision grinding used in ultra precision machine and corrective machining was studied. We explored a new rough grinding technique on optical material such as zerodur. The facility used is a polishing machine with a custom grinding module and a range of diamond resin bond wheel. Surface roughness and form accuracy are measured by surface measurement equipment(Form Talysurf series2). Our compensation machining program has complied with a target of producing surface roughness better than $0.05{\mu}m$ Ra and form accuracy of around $0.05{\mu}m$ Rt and has been unveiled as a work-hour model.

  • PDF

A Study of an OMM System for Machined Spherical form Using the Volumetric Error Calibration of Machining Center (머시닝센터의 체적오차 보상을 통한 구면 가공형상 측정 OMM시스템 연구)

  • Kim, Sung-Chung;Kim, Ok-Hyun;Lee, Eung-Suk;Oh, Chang-Jin;Lee, Chan-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.98-105
    • /
    • 2001
  • The machining accuracy is affected by geometric, volumetric errors of the machine tools. To improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as error analysis of machine tools ahas been studied for last several decades. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the spherical surface manufacturing by modeling and compensation of volumetric error of the machine tool, 4) the system development of OMM without detaching work piece from a bed of machine tool after working, 5) the generation of the finished part profile by OMM. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF

An Optical Surfacing Technique of the Best-fitted Spherical Surface of the Large Optics Mirror with Ultra Precision Polishing Machine (대형 광학계 연마 장비에 의한 대구경 반사경의 최적 근사 구면 제조 방법에 관한 연구)

  • Song, Chang Kyu;Khim, Gyungho;Hwang, Jooho;Kim, Byung Sub;Park, Chun Hong;Lee, Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper describes a novel method to surface large optics mirror with an extremely high hardness, which could replace the high cost of the repetitive off-line measurement steps and the large ultra-precision grinding machine with ultra-positioning control of 10 nm resolution. A lot of diamond pellet to be attached on the convex aluminum base consists of a grinding tool for the concave large mirror, and the tool was pressured down on the large mirror blank. The tool motion at an interval on the spiral path was controlled with each feed rate as the dwell time in the conventional computer-controlled polishing. The shape to be surfaced was measured directly by a touch probe on the machine without any separation of the mirror blank. Total 40 iterative steps of the surfacing and measurement could demonstrate the form error of RMS $7.8{\mu}m$, surface roughness of Ra $0.2{\mu}m$ for the mirror blank with diameter of 1 m and spherical radius of curvature of 5400 mm.