• Title/Summary/Keyword: On-line optimal control algorithm

Search Result 94, Processing Time 0.023 seconds

The Optimal Operating Points of Multiple UPFCs for Enhancing Power System Security Level (전력시스템 안전도 향상을 위한 다기 UPFC의 최적 운전점 결정)

  • 임정욱;문승일
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.388-394
    • /
    • 2001
  • This paper presents how to determine the optimal operating points of Unified Power Flow controllers (UPFC) the line flow control of which can enhance system security level. In order to analyze the effect of these devices on the power system, the decoupled model has been employed as a mathematical model of UPFC for power flow analysis. The security index that indicates the level of congestion of transmission line has been proposed and minimized by iterative method. The sensitivity of objective function for control variables of and UPFC has been derived, and it represents the change in the security index for a given set of changes in real power outputs of UPFC. The proposed algorithm with sensitivity analysis gives the optimal set of operating points of multiple UPECs that reduces the index or increases the security margin and Marquart method has been adopted as an optimization method because of stable convergence. The algorithm is verified by the 10-unit 39-bus New England system that includes multiple FACTS devices. The simulation results show that the power flow congestion can be relieved in normal state and the security margin can be guaranteed even in a fault condition by the cooperative operation of multiple UPECs.

  • PDF

A Study on the Fuzzy-Neural Network Controller for Load Frequency Control (부하주파수제어를 위한 퍼지-신경망 제어기에 관한 연구)

  • 정형환;김상효;주석민;정문규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.137-144
    • /
    • 1998
  • This paper proposed a optimal scale factors technique of a fuzzy-neural network for a load frequency control of two areas power system. The optimal scale factors control technique is optimize from an initial fuzzy logic control rule, and then is learned with an error back propagation learning algorithm of the fuzzy-neural network. In application two areas the load frequency control of the power system, it hopes to have response characteristic better than optimal control technique which is the conventional control technique and to show to minimize a frequency deviation and reaching and settling time of a tie line power flow deviation

  • PDF

Optimal Efficiency Control of Induction Generators in Wind Energy Conversion Systems using Support Vector Regression

  • Lee, Dong-Choon;Abo-Khalil, Ahmed. G.
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.345-353
    • /
    • 2008
  • In this paper, a novel loss minimization of an induction generator in wind energy generation systems is presented. The proposed algorithm is based on the flux level reduction, for which the generator d-axis current reference is estimated using support vector regression (SVR). Wind speed is employed as an input of the SVR and the samples of the generator d-axis current reference are used as output to train the SVR algorithm off-line. Data samples for wind speed and d-axis current are collected for the training process, which plots a relation of input and output. The predicted off-line function and the instantaneous wind speed are then used to determine the d-axis current reference. It is shown that the effect of loss minimization is more significant at low wind speed and the loss reduction is about to 40% at 4[m/s] wind speed. The validity of the proposed scheme has been verified by experimental results.

A Control of CVT Hydraulic System using Embedded System (임베디드 시스템을 이용한 CVT 유압시스템 제어)

  • Han, K.W.;Ryu, W.S.;Jang, I.G.;Jean, J.W.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 2007
  • The continuously variable transmission (CVT) of which speed ratio can change continuously in a fixed range has the benefits of low fuel consumption and exhaust gas because it enables the engine of a vehicle to operate in a high efficiency range regardless of vehicle speed. The speed ratio of belt type CVT is controlled by adjusting line pressure. The one of the line pressure control methods, mechanical-hydraulic control is usually adopting VDT's control method, in which the secondary solenoid valve has two functions both a regulator and a line pressure controller. However, this control method could not show the high performance of CVT with optimal driving capability because of the limitation of simple control algorithm, and it could not gain market share sufficiently in spite of the advantage of CVT with low fuel consumption. On the other hand, the electro-hydraulic control method gives the enhancement of power performance and low fuel consumption by implementing various driving mode using the proportional control or PWM control. The key of CVT technique is to develop a control algorithm of the electro-hydraulic solenoid valve in order to implement the speed ratio efficiently. In this paper, the line pressure control algorithm is proposed and the hydraulic system is controlled using metal belt type CVT test rig and the embedded ECU platform.

  • PDF

PI Controller Design for Permanent Magnet Synchronous Motor Drives Using Clustering Fuzzy Algorithm (콜러스터링 퍼지알고리즘을 이용한 영구자석 동기전동기 구동용 PI 제어기 설계)

  • Kwon, Chung-Jin;Han, Woo-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.182-184
    • /
    • 2004
  • This paper presents a PI controller tuning method for high performance permanent magnet synchronous motor (PMSM) drives under load variations using clustering fuzzy algorithm. In many speed tracking control systems PI controller has been used due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, the PI controller parameters are modified during operation by clustering fuzzy method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained Simulation results show the usefulness of the proposed controller.

  • PDF

An Optimal Damping Control Algorithm of Direct Two-level Inverter for Miniaturization and Weight Reduction of Auxiliary Power Supply on Railway Vehicle

  • Lee, Chang-hee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2335-2343
    • /
    • 2018
  • This paper proposes an optimal damping control algorithm of the DTI (Direct Two-level Inverter) to miniaturize and reduce the weight of auxiliary power supply for railway vehicles. The conventional auxiliary power supply for railway vehicles uses a DC-DC converter to maintain the inverter input power from the line voltage smoothly. The proposed topology does not use a DC-DC converter for reducing of manufacturing and maintenance costs. It also proposes a DTI topology removed damping resistors that generate ground signal noise in a certain period. At this time, a resonance phenomenon of DC-link voltage occurs due to variation of the inductive load, and a method of controlling the resonance phenomenon of DC-link voltage is required. In order to suppress the resonance phenomenon of the DC-link voltage, at a point before resonance occurs, this paper introduces an algorithm to suppress the resonance phenomenon of DC-link voltage by compensating the resonance component of the q axis voltage of the synchronous reference frame. The proposed algorithm verifies the effect through simulation and experiment.

A Study on the Design of Optimal Variable Structure Controller using Multilayer Neural Inverse Identifier (신경 회로망을 이용한 최적 가변구조 제어기의 설계에 관한 연구)

  • 이민호;최병재;이수영;박철훈;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1670-1679
    • /
    • 1995
  • In this paper, an optimal variable structure controller with a multilayer neural inverse identifier is proposed. A multilayer neural network with error back propagation learning algorithm is used for construction the neural inverse identifier which is an observer of the external disturbances and the parameter variations of the system. The variable structure controller with the multilayer neural inverse identifier not only needs a small part of a priori knowledge of the bounds of external disturbances and parameter variations but also alleviates the chattering magnitude of the control input. Also, an optimal sliding line is designed by the optimal linear regulator technique and an integrator is introduced for solving the reaching phase problem. Computer simulation results show that the proposed approach gives the effective control results by reducing the chattering magnitude of control input.

  • PDF

An Adaptive Fuzzy Based Control applied to a Permanent Magnet Synchronous Motor under Parameter and Load Variations (ICCAS 2004)

  • Kwon, Chung-Jin;Kim, Sung-Joong;Won, Kyoung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1168-1172
    • /
    • 2004
  • This paper presents a speed controller based on an adaptive fuzzy algorithm for high performance permanent magnet synchronous motor (PMSM) drives under parameter and load variations. In many speed tracking control systems PI controller has been used due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, the PI controller parameters are modified during operation by adaptive fuzzy method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained. Simulation results show the usefulness of the proposed controller.

  • PDF

Channel Real location Methodologies for Restorable Transmission Networks

  • Joo, Un-Gi
    • Management Science and Financial Engineering
    • /
    • v.9 no.1
    • /
    • pp.29-49
    • /
    • 2003
  • This paper develops channel reallocation methodologies for survival transmission networks, Any failure on a high-speed telecommunication network needs to be restored rapidly and a channel real-location methodology has an important role for the fast restoration. This paper considers the channel reallocation problems under a line restoration with distributed control, where the line restoration restores the failed channels by rerouting the channels along the two alternative routes. The objective is to determine the optimal number of rerouting channels on the alternative rerouting paths of a given transmission network, where the optimality criteria are the first, the last and the mean restoration times. For each criterion, the problem is formulated as a mixed integer programming and the optimal channel reallocation algorithm is suggested based upon the characterization of the optimal solution.

A Study on the Optimal Load Shedding Considering Alleviation of the Line Overload (선로과부하해소를 고려한 최적부하간단에 관한 연구)

  • 송길영;이희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.381-389
    • /
    • 1987
  • This paper presents a method for optimal load shedding in preserving a system security following abnormal condition as well as a sudden major supply outage. The method takes account of static characteristic of generators control and voltage and system frequency characteristic of loads. The optimization problem is solved by a gradient technique to get the maximal effect by the least quantity of load shedding considering line overloads as well as voltage disturbances and system frequency. The method is illustrated on a 8-bus system. It has been found that the use of the proposed algorithm for model systems alleviate the line overload more efficiently than the former method. It is believed that this method will be useful in security studies and operational planning.

  • PDF