• Title/Summary/Keyword: On-board Computer(OBC)

Search Result 33, Processing Time 0.021 seconds

ON-BOARD COMPUTER SYSTEM FOR KITSAT-1 AND 2 (우리별 1, 2호 주 컴퓨터부)

  • 김형신;이홍규;최순달
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.41-51
    • /
    • 1996
  • KITSAT-1 and 2 are microsatellites weighting 50kg and all the on-board data are processed by the on-board computer system. Hence, these on-board computers require to be highly reliable and be designed with tight power consumption, mass and size constraints. On-board computer(OBC) systems for KITSAT-1 and 2 are also designed with a simple flexible hardware for reliability and software takes more responsibility than hardware. KITSAT-1 and 2 on-board computer system consist of OBC 186 as the primary OBC and OBC80 as its backup. OBC186 runs spacecraft operating system (SCOS) which has real-time multi-tasking capability. Since their launch, OBC186 and OBC80 have been operating successfully until today. In this paper, we describe the development of OBC186 hardware and software and analyze its in-orbit operation performance.

  • PDF

Design and Implementation of On-board Computers for KAISTSAT-4 (과학위성 1호 탑재 컴퓨터의 설계 및 구현)

  • 곽성우;류상문;박홍영;오대수;유관호;최병재;김병국
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.105-111
    • /
    • 2003
  • Qualification Model of On-board Computer (OBC) for KAISTSAT-4 was developed. The OBC of KAISTASAT-4 has some improved features compared with that of KAISTSAT-3: To reduce weight and size of OBC many logics are implemented by FPGAs, and a network controller is included in OBC to access the satellite network with high speed. Also, the developed OBC has an improved tolerance against SEUs and faults. The OBC was fully tested under simulated space environment with no errors.

On Board Computer Design, Analysis and Test for KOMPSAT2 (KOMPSAT2 탑재컴퓨터 설계, 성능 분석 및 시험)

  • 조영호;심재선
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.571-577
    • /
    • 2004
  • In this paper, we describe the structure, function and the design factor of common module for KOMPSAT-2 OBC, which will be launched in 2005. By analysing OBC's performance, we can know the throughput and how much improve performance than KOMPSAT-l. it is used in the satellite mission design by system engineer. We verify the usefulness of common module for KOMPSAT-2 OBC through environment test.

Engineering Model Design and Implementation of STSAT-2 On-board computer (과학기술위성 2호 탑재 컴퓨터의 EM 개발 및 구현)

  • Yu, Chang-Wan;Im, Jong-Tae;Nam, Myeong-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • The Engineering Model of STSAT-2 on-board computer(OBC) was developed and tested completely with other sub-systems. The on-board computer of STSAT-2 has a high- performance PowerPC processors and a structure of centralized network communication. In addition, a lot of logics are implemented by Field Programmable Gate Array, such as interrupt controller, watchdog timer and UART. It could make the weight and size of OBC lighter and smaller. Also, the STSAT-2 on-board computer has more improved tolerance against Single Event Upsets and faults than that of the STSAT-1.

Algorithm to cope with SEUs(Single Event Upsets) on STSAT-1 OBC(On-board Computer) (과학기술위성 1호 탑재 컴퓨터(On-board Computer)에서의 SEUs(Single Event Upsets) 극복 알고리즘)

  • Chung, Sung-In;Park, Hong-Young;Lee, Heung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.10-16
    • /
    • 2008
  • Generally, the satellite circling round in a low orbit goes through Van Allen belt connecting with the magnetic fold, in which electronic components are easily damaged and shortened by charged particles moving in a cycle between the South Pole and the North Pole. In particular, Single Event Upset(SEU) by radiation could cause electronic device on satellite to malfunction. Based on the idea mentioned above, this study considersabout SEU effect on the On-board Computer(OBC) of STSAT-1 in the space environment radiation, and shows algorithm to cope with SEUs. In this experiment, it also is shown that the repetitive memory read/write operation called memory wash is needed to prevent the accumulation of SEUs and the choice for the period of memory wash is examined. In conclusion, it is expected that this research not only contributes to understand low capacity of On-board Computer(OBC) on Low Earth Orbit satellite(LEOS) and SaTReC Technology satellite(STSAT) series, but also makes good use of each module development of Korea Multi-Purpose Satellite(COMPSAT) series.

ESTIMATION OF SEU THRESHOLD ENERGY FROM KITSAT-1 DATA USING AP-8 MODEL (AP-8 모델을 이용한 우리별 1호 SEU 문턱에너지 추정)

  • 김성준;신영훈;김성수;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.109-118
    • /
    • 2001
  • KITSAT-1, launched in 1992, passes through Inner Van Allen Radiation Belt in which high energy Protons cause single event upsets(SBUs) in the main memory of KITSAT-1 OBC(On-Board Computer) 186. The present paper compares SEU data from the OBC186 with the AP-8 model of NASA/NSSDC using the Chi-Square method to estimate the SEU threshold energy. Shielding effect by the satellite body has been taken into account to model the proton fluxes at the position of OBC186, and SEUs recorded during the high solar activities have been removed to avoid the spurious result. The result shows that the SEU threshold energy of the main memory of KITSAT-1 OBC186 is estimated to be about $110{pm}10MeV$.

  • PDF

The OBC Reconfiguration Test on LEO Satellite (저궤도 위성에서 위성탑재컴퓨터의 재구성 시험)

  • Jeong, Jae-Yeop;Lee, Cheol-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.103-107
    • /
    • 2017
  • The Satellite OBC(On Board Computer) manages critical functionality such as satellite attitude control, fault management, payload management, command/telemetry processing etc. The OBC consist of various modules. Each module perform mission critical operation. So all modules designed as hot or cold redundancy architecture. The redundancy design gives a guarantee high reliability and it allows normal operation of satellite using reconfiguration capability. In this paper, introduces reconfiguration unit operation and describe the results of testing in the ETB.

Development of On-board Computer Module for Formation Flying and Cluster Operation Nano-satellites (초소형 위성의 편대 및 군집 운용을 위한 모듈형 온보드 컴퓨터 개발)

  • Oh, Hyungjik;Kim, Do-hyun;Park, Ki-Yun;Lee, Ju-in;Jung, Insun;Lee, Seonghwan;Park, Jae-Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.728-737
    • /
    • 2019
  • In this study, the minimized on-board computer (OBC) module for integrated navigation is developed, which provides satellites' relative position information in formation flying and cluster operation situations. The scalability is considered to apply the user-selected wireless communication module and Global Positioning System (GPS) receiver for navigation, while considering to meet the structural design standard of nano-satellites. As a result of the product development and production, the processing speed of integrated navigation and real-time data synchronization is satisfied for cluster operation nano-satellites by using micro controller unit (MCU). From a heat/vacuum, vibration and radiation test, the OBC was confirmed to be operated in space environments. From these results, a mass production system of OBC was made which is a key part of development on satellite formation flying and cluster/constellation missions that the community demands are increasing.

Memory Scrubbing for On-Board Computer of STSA T-2 (과학기술위성 2호 탑재컴퓨터의 메모리 세정 방안)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.519-524
    • /
    • 2007
  • The OBC(on-board computer) of a satellite which plays a role of the controller for the satellite should be equipped with preventive measures against transient errors caused by SEU(single event upset). Since memory devices are pretty much susceptible to these transient errors, it is essential to protect memory devices against SFU. A common method exploits an error detection and correction code and additional memory devices, combined with periodic memory scrubbing. This paper proposes an effective memory scrubbing scheme for the OBC of STSAT-2. The memory system of the OBC is briefly mentioned and the reliability of the information stored in the memory system is analyzed. The result of the reliability analysis shows that there exist optimal scrubbing periods achieving the maximum reliability for allowed overall scrubbing overhead and they are dependent on the significance of the information stored. These optimal scrubbing periods from a reliability point of view are derived analytically.

Development of Single Board Computer (SBC) for Nano/Pico Small Satellites (초소형위성용 단일보드 탑재컴퓨터의 개발)

  • Kim, Young-Hyun;Moon, Byoung-Young;Lee, Bo-Ra;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.101-110
    • /
    • 2004
  • Flight and Qualification Models of Single Board Computer (SBC), called On-Board Computer (OBC), for HAUSAT-l picosatellite, which is scheduled to launch on September, 2004 by Russian "Dnepr" launch vehicle, have been developed. The OBC of HAUSAT-1 has been designed with some improved features compared to other picosatellites. A multifunctional controller and up-to-date SPI (Serial Peripheral Interface) and 1-Wire interface are implemented to simplify the harness routing and to minimize the mass and size of OBC. The improved fault-tolerant architecture design methodology is incorporated in the HAUSAT-1 OBC to protect against space radiation environment. The functions of the OBC were fully tested and verified by the Electrical Test Bed (ETB) model. This paper is also addressing the environmental test results, such as random vibration and thermal vacuum tests.