• Title/Summary/Keyword: On-Line Temperature Monitoring

Search Result 156, Processing Time 0.035 seconds

On-line Monitoring and Diagnostics for Distribution Panel System (배전반 시스템의 온라인 감시 및 진단)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.106-110
    • /
    • 2008
  • Continuous on-line temperature monitoring allows corrective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system.

  • PDF

On-Line Condition Monitoring of Electrical Equipment Using Temperature Sensor (온도센서를 이용한 전력설비의 온라인 상태 감시)

  • Choi, Yong-Sung;Kim, Sun- Jae;Kim, Yeong-Min;Song, Hwao-Kee;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.202-208
    • /
    • 2008
  • Condition monitoring technologies allow achieving this goal by minimizing downtime through the integrated planning and scheduling of repairs indicated by condition monitoring techniques. Thermal runaways induced by conduction problems deteriorate insulating material and cause disruptive dielectric discharges resulting in arcing faults. Therefore, having the ability to directly measure the temperature of the contacts while in service will provide more information to determine the true condition of the equipment. It allows connective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on -line condition monitoring of energized equipment is applicable both as stand alone system and with an interface for power quality monitoring system. The paper presents the results of wireless temperature monitoring: of electrical equipment at a power plant.

On-Line Diagnostics and Monitoring of Distribution Panel Using IR-Sensor (광온도센서를 이용한 분전반의 온라인 진단 및 감시)

  • Yun, Ju-Ho;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2110-2111
    • /
    • 2008
  • Continuous on-line temperature monitoring allows corrective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system.

  • PDF

On-Line Condition Monitoring and Diagnostics of Distribution Equipment (배전반 설비의 온라인 모니터링 및 진단)

  • Yun, Ju-Ho;Im, Wan-Su;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.525-526
    • /
    • 2007
  • Continuous on-line temperature monitoring provides the means to evaluate current condition of equipment and detect abnormality. It allows corrective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system.

  • PDF

A Technical Trend on On-Line Condition Monitoring and Diagnostics of Power Equipments (배전설비의 온라인 모니터링과 진단 기술 동향)

  • Lim, Wan-Soo;Lee, Tae-Woo;Yeo, Woon-Cheol;Lee, Sung-Gil;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1974-1975
    • /
    • 2007
  • Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system. The paper presents the results of wireless temperature monitoring of switchgear at a power plant over a two-year period.

  • PDF

Estimation of Hardened Layer Dimensions Using Multi-Point Temperature Monitoring in Laser Surface Hardening Processes (레이저 표면 경화 공정에서 다점 온도 모니터링을 통한 경화층 크기 예측)

  • 우현구
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1048-1054
    • /
    • 2003
  • In laser surface hardening processes, the geometrical parameters such as the depth and the width of a hardened layer can be utilized to assess the hardened layer quality. However, accurate monitoring of the geometrical parameters for on-line process control as well as for on-line quality evaluation is very difficult because the hardened layer is formed beneath a material surface and is not visible. Therefore, temperature monitoring of a point of specimen surface has most frequently been used as a process monitoring method. But, a hardened layer depends on the temperature distribution and the thermal history of a specimen during laser surface hardening processing. So, this paper describes the estimation results of the geometric parameters using multi-point surface temperature monitoring. A series of hardening experiments were performed to find the relationships between the geometric parameters and the measured temperature. Estimation results using a neural network show the enhanced effectiveness of multi-point surface temperature monitoring compared to one-point monitoring.

A Study on Geothermal Evaluation of Alluvium and Riverbed using Thermal Line Temperature Monitoring (다중 온도 모니터링을 통한 충적층 및 하상의 지열특성 평가 연구)

  • Jung, Woo-Sung;Kim, Hyoung-Soo;Park, Dong-Soon;Ahn, Young-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.171-178
    • /
    • 2006
  • In advanced countries, state-of-the-art temperature monitoring technique is widely used for effective use of geothermal resources. But these kind of modern tools such as Thermal Line Sensor has not been applied to find geothermal characteristics of alluvium and riverbed in domestic area. In this research, state-of-the-art thermal line temperature sensor monitoring was introduced. And long term field test using this type of sensor was performed to find geothermal characteristics of alluvium and riverbed and evaluate the availability for heat energy source. As a result, temperature monitoring technique through thermal line sensor was very effective to obtain basic geothermal information of alluvium deposit and riverbed. Also, it was found that the groundwater temperature phase showed its potential of utilization as a energy source of heat pump. It is estimated that further study shows a specific corelation between temperature monitoring data and its availability as a energy source.

  • PDF

A Study on Geothermal Characteristics of Dam Body and Seepage Flow (댐 제체 및 침투수 흐름의 지열학적 고찰)

  • Park, Dong-Soon;Jung, Woo-Sung;Kim, Hyoung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.75-85
    • /
    • 2006
  • In recent geotechnical engineering, geothermal approach has been on the horizon to deal with geoenvironmental issues, freezing and thawing problems, and seepage phenomenon in dams and embankments. In this study, geothermal characteristic through inner body of dams and its influence on the seepage flow were experimented by lab test and field instrumentation. Also, one of up-to-date temperature monitoring technique, called as multi-channel thermal line sensing, was evaluated its availability. As a result of lab test, it is found that the seepage flow has influence on the geothermal characteristic and a potential of finding phreatic line and seepage fluctuation could be possible by continuous temperature monitoring using thermal line sensing skills. These kine of geothermal information could be available to the modelling of water geo-structure interaction. Out of short-term field tests, clear water table and temperature distribution of a dam were easily found through temperature monitoring in holes located near a reservoir and holes within a depth of constant temperature layer. However, it is also found that the geothermal flow and finding seepage line could not be easily understandable through multi-channel temperature monitoring because of the existence of constant temperature field, thermal conductivity of soils and rocks, and unsaturated characteristics of geo-material. In this case, long-term geothermal monitoring is recommended to find sudden fluctuation of seepage line and amount of leakage.

  • PDF

Spatial Reservoir Temperature Monitoring using Thermal Line Sensor (다중온도센서를 통한 입체적인 호소 온도모니터링 평가)

  • Hwang, Ki-Sup;Park, Dong-Soon;Jung, Woo-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1002-1006
    • /
    • 2006
  • Temperature monitoring techniques per depth have been recognized as important information in the reservoir environmental issues. However, old measurement method by single temperature sensor and cable type has demerits not only for its limited measuring location but for its inconvenience of users. In this study, multi-channel temperature monitoring system was introduced and executed experiment for actual application feasibility evaluation. Both type of new techniques such as multi-channel addressable built-in temperature sensor and fiber optic multi sensor were tested in Daechung and Imha reservoir. As a result, it was proved that these kinds of temperature monitoring skills had very good performance and availability for a output of spatial, simultaneous thermal distribution focused on the user's convenience. And these measuring method and thermal data will be useful for providing basic information in a water resources investigation like reservoir stratification and environmental problems.

  • PDF

Monitoring of Temperature and Strain Variation with FBG Sensors (FBG 센서를 활용한 온도와 스트레인 변화 모니터링)

  • Ko, Ki-Han;Park, Young;Cho, Yong-Hyeon;Jung, Ho-Sung;Cho, Yong-Suk;Choi, Won-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.218-221
    • /
    • 2009
  • This paper reports on measurement method for the fiber optic strain monitoring of overhead contact line systems of trains, We used FBG (Fiber Bragg Grating) sensors to measure the strain variation of overhead contact line. FBG sensors can sensitively measure the variation of strain and! or temperature by the shift wavelength of reflected wave according to the lattice variation during the measurement. FBG sensor were attached on the contact line and connected to the monitoring system with optical fibers. The monitering system with FBG sensors showed very good sensitivity to measuring strain variation and this system could be applied to the overhead contact line of KTX (Korea Train eXpress).