• Title/Summary/Keyword: On-Line Parameter Estimation

Search Result 129, Processing Time 0.027 seconds

Door opening control using the multi-fingered robotic hand for the indoor service robot PSR

  • Rhee, Chang-Ju;Shim, Young-Bo;Chung, Woo-Jin;Kim, Mun-Sang;Park, Jong-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1093-1098
    • /
    • 2003
  • In this paper, a practical methodology of hand-manipulator motion coordination for indoor service robot is introduced. This paper describes the procedures of opening door performed by service robot as a noticeable example of motion coordination. This paper presents well-structured framework for hand-manipulator motion coordination, which includes intelligent sensor data interpretation, object shape estimation, optimal grasping, on-line motion planning and behavior-based task execution. This proposed approach is focused on how to integrate the respective functions in harmony and enable the robot to complete its operation under the limitation of usable resources. As a practical example of implementation, the successful experimental results in opening door whose geometric parameters are unknown beforehand are provided.

  • PDF

A Speed Control of Stepping Motor Using a Self-Tuning Regulator

  • Kim, Young-Tae;Kim, Sei-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.69-75
    • /
    • 2009
  • In this paper, a self-tuning regulator for a speed control of a permanent magnet type stepping motor is proposed. The self-tuning theory provides a nonlinear modeling of a stepping motor drive system and can provide the controller with information regarding the reference variation and parameter variation of the stepping motor through the on-line estimation. The proposed self-tuning regulator organize the positive feedback loop and IP(Integral-Proportional) type. Therefore, the proposed self-tuning regulator has a robust control capabilities during dynamic operation. The availability of the proposed controller is verified through experimental results.

Adaptive Vector Control for Induction Motor Using Parameter Estimation (매개변수 추정에 의한 유도전동기의 적응 벡터제어)

  • Lee, Y.J.;Kim, H.J.;Oh, W.S.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.363-366
    • /
    • 1990
  • In the indirect vector control method, the rotor resistance variation caused by operating temperature change is an undesirable nature. A new adaptation algorithm to compensate for the rotor resistance change based on the on-line estimation of field vector which requires the measurements of stator voltage and rotor speed is presented in this paper. Also minimum variance controller is presented for the adaptive control performance. This algorithm has been tested by simulating the induction machine using a digital computer and the results are discussed.

  • PDF

Studies on the Computerization of Reliability Paper (Ⅵ) (신뢰성 확률지의 전산화에 관한 연구 (Ⅵ))

  • 정수일
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.373-380
    • /
    • 1999
  • This paper summerizes the former 5 papers that studied computer programming for the estimation of the Weibull, Extreme value, Hazard, Normal and Log-normal parameters which have a close relation with the reliability of the various kinds of industrial products. Probability paper is very commonly used in estimating the parameters, however, it is very hard to neglect the errors in plotting the data, and especially in drawing the regression line. The main purpose of this paper is to reduce these errors and to help the engineers to use the parameters in improving the reliability of their prod- ucts. The following parts are included in the computer programming with the em- phases on significant digits and rounding of numerical values : $\bullet$ data input part for various cases $\bullet$ parameter estimation part $\bullet$ printing part for input data $\bullet$ printing part for the results $\bullet$ printing part for the graphic(probability paper). And the running results(monitor displays) of the program for a fictitious example of Weibull distribution is given for the interested ones.

  • PDF

Load variation Compensated Neural Network Speed Controller for Induction Motor Drives (부하변동을 보상한 유도전동기 신경망 속도 제어기)

  • Oh, Won-Seok;Cho, Kyu-Min;Kim, Hee-Jun;Hyun, Sin-Tae;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1137-1139
    • /
    • 2002
  • In this paper, recurrent artificial neural network (RNN) based self tuning speed controller is proposed for the high performance drives of induction motor. RNN provides a nonlinear modeling of motor drive system and could give the information of the load variation, system noise and parameter variation of induction motor to the controller through the on-line estimated weights of corresponding RNN. Thus, proposed self tuning controller can change gains of the controller according to system conditions. The gain is composed with the weights of RNN. For the on-line estimation of the weights of RNN, extended kalman filter (EKF) algorithm is used. Self tuning controller that is adequate for the speed control of induction motor is designed. The availability of the proposed controller is verified through the MATLAB simulation with the comparison of conventional PI controller.

  • PDF

Dead Time Compensation Scheme for a PWM Inverter-fed PMSM Drive Using MRAC Scheme and Coordinate Transformation (MRAC 기법과 좌표변환을 이용한 PWM 인버터 구동 PMSM의 데드타임 보상기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • A simple and effective dead time compensation scheme for a PWM inverter-fed permanent magnet synchronous motor (PMSM) drive using the model reference adaptive control (MRAC) and coordinate transformation is presented. The basic concept is to first transform a time-varying disturbance caused by the dead time and inverter nonlinearity into unknown constant or slowly-varying one by the coordinate transformation, and then use the MRAC design technique to estimate this parameter in the stationary reference frame. Since the MRAC scheme is a suitable way of estimating such a parameter, the control performance can be significantly improved as compared with the conventional observer-based method tracking time-varying parameters. In the proposed scheme, the disturbance voltage caused by the dead time is effectively estimated and compensated by on-line basis without any additional circuits nor existing disadvantages as in the conventional methods. The asymptotic stability is proved and the effectiveness of the proposed scheme is verified.

A study on the calibration parameter estimation of camera using square calibration frame (정방형 교정 frame을 이용한 카메라의 교정 파라메타 추정에 관한 연구)

  • 최성구;노도환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.127-137
    • /
    • 1996
  • The 3-dimensional measurement using stereo vision system must achieve a camera calibration. So far, the 3-dimensional calibration technique that uses two-dimensional grid papar and a non-linear least square method has been developed and tested. But, this method is inefficient because it has many calculation procedure and a non-linear analysis. Therefore, this paper proposed the projective geometric method which produced the calibration parameter by vanishing point. The vanishing point is producted by a cross ratio and a parallel line pairs. The results of the computer simulation show utility of the proposed method.

  • PDF

Compensatory cylindricity control of the C.N.C. turing process (컴퓨터 수치제어 선반에서의 진원통도 보상제어)

  • 강민식;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.694-704
    • /
    • 1988
  • A recursive parameter estimation scheme utilizing the variance perturbation method is applied to the workpiece deflection model during CNC turning process, in order to improve the cylindricity of slender workpiece. It features that it is based on exponentially weighted recursive least squares method with post-process measurement of finish surfaces at two locations and it does not require a priori knowledge on the time varying deflection model parameter. The measurements of finish surfaces by using two proximity sensors mounted face to face enable one to identify the straightness, guide-way, run-out eccentricity errors. Preliminary cutting tests show that the straightness error of the finish surface due to workpiece deflection during cutting is most dominant. Identifying the errors and recursive updating the parameter, the off-line control is carried out to compensate the workpiece deflection error, through single pass cutting. Experimental results show that the proposed method is superior to the conventional multi-pass cutting and the direct compensation control in cutting accuracy and efficiency.

Radome Slope Estimation using Mode Parameter Renewal Method of IMM Algorithm (IMM 알고리듬의 모드 계수 갱신 방법을 통한 레이돔 굴절률 추정)

  • Kim, Young-Mo;Back, Ju-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.763-770
    • /
    • 2017
  • A radome mounted on the front of an aircraft can cause refraction errors for various reasons that occur during maneuver in seeking and tracking a target. This refraction error means that the microwave seeker is detecting apparent target. An Interactive Multiple Model (IMM) algorithm is applied to estimate radome slope mounted on an aircraft in 3D space. However, even though the parameter of uncertain system model such as radome slope can be estimated, the estimated performance can not be guaranteed when it exceeds the range of the predicted value. In this paper, we propose a method to update the predicted value by using the radome slope as the mode parameter of the IMM algorithm, and confirm the radome slope estimation performance of the proposed method.

Real-Time Building Load Prediction by the On-Line Weighted Recursive Least Square Method (실시간 가중 회기최소자승법을 사용한 익일 부하예측)

  • 한도영;이재무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.609-615
    • /
    • 2000
  • The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.

  • PDF