• Title/Summary/Keyword: On-Chip Network

Search Result 386, Processing Time 0.02 seconds

A Design of the New Three-Line Balun (새로운 3-라인 발룬 설계)

  • 이병화;박동석;박상수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.750-755
    • /
    • 2003
  • This paper proposes a new three-line balun. The equivalent circuit of the proposed three-line balun is presented, and impedance matrix[Z]of the equivalent circuit is derived from the relationship between the current and voltage at each port. The design equation for a given set of balun impedance at input and output ports is presented using[S]parameters, which is transferred fom impedance matrix,[Z]. To demonstrate the feasibility and validity of design equation, multi-layer ceramic(MLC) chip balun operated in the 2.4 GHz ISM band frequency is designed and fabricated by the use of the low temperature co-fired ceramic(LTCC) technology. By employing both the proposed new three-line balun equivalent circuit and multi-layer configuration provided by LTCC technology, the 2012 size MLC balun is realized. Measured results of the multi-layer LTCC three-line balun match well with the full-wave electromagnetic simulation results, and measured in band-phase and amplitude balances over a wide bandwidth are excellent. This proposed balun is very easily applicable to multi-layer structure using LTCC as shown in the paper, and also can be realized with microstrip lines on PCB. This distinctive performance is very favorable for wireless communication systems such as wireless LAN(Local Area Network) and Bluetooth applications.

Recent Trend in Measurement Techniques of Emotion Science (감성과학을 위한 측정기법의 최근 연구 동향)

  • Jung, Hyo-Il;Park, Tae-Sun;Lee, Bae-Hwan;Yun, Sung-Hyun;Lee, Woo-Young;Kim, Wang-Bae
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.235-242
    • /
    • 2010
  • Emotion science is one of the rapidly expanding engineering/scientific disciplines which has a major impact on human society. Such growing interests in emotion science and engineering owe the recent trend that various academic fields are being merged. In this paper we review the recent techniques in the measuring the emotion related elements and applications which include animal model system to investigate the neural network and behaviour, artificial nose/neuronal chip for in-depth understanding of sensing the outer stimuli, metabolic controlling using emotional stimulant such as sounds. In particular, microfabrication techniques made it possible to construct nano/micron scale sensing parts/chips to accommodate the olfactory cells and neuron cells and gave us a new opportunities to investigate the emotion precisely. Recent developments in the measurement techniques will be able to help combine the social sciences and natural sciences, and consequently expand the scope of studies.

  • PDF

Fibroblastic Reticular Cell Derived from Lymph Node Is Involved in the Assistance of Antigen Process (림프절 유래 fibroblastic reticular cell의 효율적 항원처리 관련성에 대한 연구)

  • Kim, Min Hwan;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1027-1032
    • /
    • 2016
  • Antigen is substance causing disease derived from pathogen. Living organism has the immune system in terms of defense mechanism against antigen. Antigen is processed through several pathways such as phagocytosis, antibody action, complement activation, and cytotoxins by NK or cytotoxic T lymphocyte via MHC molecule. Lymph node (LN) is comprised of the complicated 3 dimensional network and several stromal cells. Fibroblastic reticular cells (FRC) are distributed in T zone for interaction with T cells. FRC produces the extra cellular matrix (ECM) into LN for ECM reorganization against pathogen infections and secretes homing chemokines. However, it has not so much been known about the involvement of the antigen process of FRC. The present report is for the function of FRC on antigen process. For this, FRC was positioned with several infected situations such as co-culture with macrophage, T cell, lipopolysaccharide (LPS) and TNFα stimulation. When co-culture between FRC with macrophage and T cells was performed, morphological change of FRC was observed and empty space between FRCs was made by morphological change. The matrix metallo-proteinase (MMP) activity was up-regulated by Y27632 and T cells onto FRC. Furthermore, inflammatory cytokine, TNFα regulated the expression of adhesion molecules and MHC I antigen transporter in FRC by gene chip assay. NO production was elevated by FRC monolayer co-cultured with macrophage stimulated by LPS. GFP antigen was up-taken by macrophage co-cultured with FRC. Collectively, it suggests that FRC assists of the facilitation of antigen process and LN stroma is implicated into antigen process pathway.

Research of Mobile 3D Dance Contents Construction Using Motion Capture System (모션캡처 시스템을 이용한 모바일 3D 댄스 콘텐츠 제작 연구)

  • Kim Nam-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.9
    • /
    • pp.98-107
    • /
    • 2006
  • By improving performance of mobile machine(3D engine, 3D accelerator chip set, etc) and developing wireless network technology, a demand for actual contents of users is being increased rapidly. But, there are some difficulties yet for the speedy development of actual contents because of the limitation of development resources that is dependent on each mobile device's different performance. In general, much of the animated character-creation work for mobile environment is still done manually by experienced animator with the method of key frame processing. However, it needs a lot of time and more costs for creating motion. Additionally, it is possible to cause a distortion of motion. In this paper, I solved the difficulties by using a optical motion capture system, it was able to acquire accurate motion data more easily and quickly, and then it was possible to make 3D dance contents efficiently. Also, I showed techniques of key reduction and controlling frame number for using huge amounts of motion capture data in mobile environment which requires less resources. In making 3D dance contents, using an optical motion capture system was verified that it was more efficient to make and use actual-reality contents by creating actual character motion and by decreasing processing time than existing method.

  • PDF

Study on the Neural Network for Handwritten Hangul Syllabic Character Recognition (수정된 Neocognitron을 사용한 필기체 한글인식)

  • 김은진;백종현
    • Korean Journal of Cognitive Science
    • /
    • v.3 no.1
    • /
    • pp.61-78
    • /
    • 1991
  • This paper descibes the study of application of a modified Neocognitron model with backward path for the recognition of Hangul(Korean) syllabic characters. In this original report, Fukushima demonstrated that Neocognitron can recognize hand written numerical characters of $19{\times}19$ size. This version accepts $61{\times}61$ images of handwritten Hangul syllabic characters or a part thereof with a mouse or with a scanner. It consists of an input layer and 3 pairs of Uc layers. The last Uc layer of this version, recognition layer, consists of 24 planes of $5{\times}5$ cells which tell us the identity of a grapheme receiving attention at one time and its relative position in the input layer respectively. It has been trained 10 simple vowel graphemes and 14 simple consonant graphemes and their spatial features. Some patterns which are not easily trained have been trained more extrensively. The trained nerwork which can classify indivisual graphemes with possible deformation, noise, size variance, transformation or retation wre then used to recongnize Korean syllabic characters using its selective attention mechanism for image segmentation task within a syllabic characters. On initial sample tests on input characters our model could recognize correctly up to 79%of the various test patterns of handwritten Korean syllabic charactes. The results of this study indeed show Neocognitron as a powerful model to reconginze deformed handwritten charavters with big size characters set via segmenting its input images as recognizable parts. The same approach may be applied to the recogition of chinese characters, which are much complex both in its structures and its graphemes. But processing time appears to be the bottleneck before it can be implemented. Special hardware such as neural chip appear to be an essestial prerquisite for the practical use of the model. Further work is required before enabling the model to recognize Korean syllabic characters consisting of complex vowels and complex consonants. Correct recognition of the neighboring area between two simple graphemes would become more critical for this task.

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.